
- •Технология конструкционных материалов
- •190600 «Эксплуатация транспортно-технологических машин и комплексов»
- •Технология конструкционных материалов
- •190600 «Эксплуатация транспортно-технологических машин и комплексов»
- •Рецензент:
- •Содержание
- •Введение
- •Лабораторная работа № 1 испытания на растяжение. Определение механических свойств
- •4. Методика проведения работы и содержание отчета
- •Лабораторная работа № 2 определение ударной вязкости металлов
- •Испытательная машина
- •3. Необходимые оборудование, приборы, материалы
- •4. Методика проведения работы и содержание отчета
- •4.1. Порядок проведения опыта
- •4.2. Оформление отчёта по лабораторной работе
- •Лабораторная работа № 3 испытания на твердость
- •Лабораторная работа № 4 изготовление отливки в разовой литейной форме
- •Лабораторная работа № 5 изучение влияния пластической деформации на свойства металлов
- •Лабораторная работа № 6 ручная дуговая сварка и её применение
- •5. Необходимые приборы, оборудование и материалы
- •Лабораторная работа № 7 газовая сварка и резка металлов
- •5. Необходимые материалы, оборудование, инструмент
- •Выбор номера наконечника сварочной горелки в зависимости от толщины свариваемого металла
- •Выбор угла наклона сварочной горелки к оси сварного шва в зависимости от толщины свариваемого металла
- •Выбор диаметра присадочной проволоки в зависимости
- •Пропан-бутано-кислородная сварка
- •Режимы пропан-бутано-кислородной сварки
- •Лабораторная работа № 8
- •Лабораторная работа № 9
- •Зенкеры
- •Развертки
- •Метчики
- •Лабораторная работа № 10 изучение устройства и работы фрезерного станка. Режущий инструмент
- •Горизонтально-фрезерные станки
- •Вертикально-фрезерные станки
- •Лабораторная работа № 11 обработка заготовок на шлифовальных станках
- •Примеры применения шлифовальных кругов в зависимости от их твёрдости
- •Элементы режима резания при плоском шлифовании
- •Максимально допустимые окружные скорости шлифовальных кругов
- •Технология конструкционных материалов
- •190600 «Эксплуатация транспортно-технологических машин и комплексов»
- •241037, Брянск, проспект Станке Димитрова, 3
4. Методика проведения работы и содержание отчета
4.1. В отчете указать наименование и цель работы.
4.2. Привести краткие сведения из теории. Особое внимание обратить на диаграмму растяжения, определение и формулировку характеристик механических свойств.
4.3. Зарисовать образец до и после разрушения с указанием основных его размеров.
4.4. Определить величины абсолютного и относительного удлинения образца и относительного сужения площади его поперечного сужения.
4.5. Вычертить
в масштабе диаграмму растяжения
испытанного образца с указанием значений
основных величин (РПР,
РУ,
РТ,
РВ,
,
,
).
4.6. Рассчитать
значения прочностных характеристик
(,
,
,
).
4.7. Значения всех определенных характеристик занести в таблицу:
Характеристика материала |
Единицы измерения |
Значения |
Предел пропорциональности Предел упругости Предел текучести Предел прочности Относительное удлинение Относительное сужение |
МПа МПа МПа МПа % % |
|
5. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
5.1. Г.И. Сильман. Материаловедение:учеб. пособие для вузов по специ-альностям направления подгот. "Металлургия, машиностроиние и материалопереработка" / Г. И. Сильман. - М.: Академия, 2008. - 335 с.
5.2. Ю.М. Лахтин, В.П. Леонтьева. Материаловедение. М.: Машинострое-ние, 1990. – С. 87-92.
5.3. Ю.А. Геллер, А.Г. Рахштадт. Материаловедение. М.: Металлургия, 1983. – С. 117-126.
5.4. В.С. Золотаревский. Механические свойства металлов. М.: Металлур-гия, 1983. – С. 146-183.
Лабораторная работа № 2 определение ударной вязкости металлов
1. ЦЕЛЬ РАБОТЫ: Экспериментальное определение ударной вязкости стальных образцов.
2. КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ
В зависимости от характера действия внешних нагрузок, напряжённого состояния, конструктивных особенностей и температуры одна и та же деталь из определенного материала может разрушаться вязко или хрупко. Известно множество случаев хрупкого разрушения под действием ударной нагрузки металлов, обладающих высокими пластическими свойствами.
Для проверки способности материала сопротивляться ударным нагрузкам и выявления склонности к хрупкому разрушению проводят испытания на удар.
Ударные испытания различают:
а) по виду деформации – на изгиб, растяжение, сжатие, кручение, срез;
б) по скорости нагружения – обычные (4-7 м/с), скоростные (100 – 300 м/с) и сверхскоростные (свыше 300 м/с);
в) по числу ударов – одним ударом или повторными ударами;
г) по температуре испытания.
Наиболее широкое применение получил способ однократного испытания при ударном изгибе образцов прямоугольного сечения с надрезом посередине или без него (ГОСТ 9454-78). Наличие надреза способствует более хрупкому разрушению материала, что вызывает излом образца даже при пластичном материале. Кроме того, разрушению надрезанного образца способствует концентрация напряжений. Используют надрезы двух видов – V-образный и U-образный. Кроме этого может быть предварительно создана трещина.
Скорость движения маятника в момент удара должна составлять 5±0,5 м/с для копра с потенциальной энергией 300 Дж (30 кгс·м).
Основной стандартный образец типа Менаже, согласно ГОСТ 9454-78, должен иметь размеры, указанные на рисунке 1. Для некоторых испытаний применяют также большой и малые образцы типа Шарпи с глубоким надрезом. Если для испытания на удар используются нестандартные образцы, то следует предварительно провести сравнительные испытания стандартных и нестандартных образцов для получения эмпирических коэффициентов.
В результате испытания определяется работа удара K (KU, KV или KT) и ударная вязкость материала KC (KCU, KCV или KCT), представляющая собой работу, затраченную для ударного излома образца, отнесенную к площади поперечного сечения в месте надреза. Если сравнить два материала с одинаковым пределом прочности, но требующие для разрушения разное количество работы, то тот, для которого работа будет больше, называют более вязким материалом.
Рисунок
1 – Образец
для испытания на ударную вязкость с
U-образным
надрезом
Хотя данные об ударной вязкости и не могут быть использованы при расчёте на прочность или для аналитической оценки опасности хрупкого разрушения, но они позволяют решить вопрос о применимости того или иного материала в условиях динамических нагрузок, в которых работают многие детали машин, имеющие отверстия, канавки для шпонок, разные конструктивные углы и т.п. Низкая ударная вязкость служит основанием для браковки материала. Стали, применяемые для изготовления деталей, работающих при динамических нагрузках, должны иметь ударную вязкость не менее 8·10 Н·м/м².