
- •Содержание
- •Введение
- •Технические требования
- •Требования к компьютеру
- •Рекомендуемые параметры вычислительной техники для эффективной (профессиональной) работы с T-FLEX Анализом
- •Установка системы T-FLEX Анализ
- •Структурная организация приложения T-FLEX Анализ
- •Этапы анализа конструкций
- •Быстрое начало
- •Шаг 1. Подготовка объёмной твердотельной модели изделия
- •Шаг 2. Создание «Задачи»
- •Шаг 3. Назначение материала
- •Шаг 4.1 Наложение граничных условий. Задание закреплений
- •Шаг 4.2 Наложение граничных условий. Задание нагружений
- •Шаг 5. Выполнение расчёта
- •Шаг 6. Анализ результатов расчёта
- •Подготовка конечно-элементной модели для Анализа (Препроцессор)
- •Виды конечно-элементных моделей
- •Назначение и роль сеток
- •Виды и роль граничных условий
- •Управление «Задачами», команды управления задачами
- •Общие свойства задач
- •Задание материала
- •Построение сетки
- •Параметры сетки
- •Задание ограничений
- •Полное закрепление
- •Частичное закрепление
- •Контакт
- •Упругое основание
- •Задание нагрузок
- •Механические нагрузки
- •Сила
- •Давление
- •Вращение
- •Ускорение
- •Цилиндрическая нагрузка
- •Крутящий момент
- •Осциллятор
- •Дополнительная масса
- •Тепловые нагрузки
- •Температура
- •Тепловой поток
- •Тепловая мощность
- •Конвективный теплообмен
- •Излучение
- •Сводная таблица нагрузок
- •Редактирование нагрузок и закреплений
- •Настройки и сервисные команды
- •Работа с 3D окном при подготовке элементов задач
- •Особенности работы с параметрической моделью
- •Экспорт
- •Обработка результатов (Постпроцессор)
- •Общие принципы работы с результатами
- •Настройки и сервисные команды окна результатов расчёта
- •Настройка окна результатов расчёта
- •Настройка цветовой шкалы
- •Использование датчиков для анализа результатов
- •Использование графиков для анализа результатов
- •Интегральное значение
- •Построение сечений
- •Генерация отчётов
- •Пример интерпретации результата
- •Статический анализ
- •Особенности этапов статического анализа
- •Алгоритм оценки статической прочности по результатам моделирования
- •Настройки процессора линейной и нелинейной статики
- •Задача оптимизации
- •Задача об оптимизации толщины балки
- •Приложение (справочные материалы)
- •Характеристики конструкционных материалов
- •Объёмное напряжённо-деформированное состояние в точке
- •Оценка статической прочности конструкций. Теории прочности
- •Анализ устойчивости
- •Особенности этапов анализа на устойчивость
- •Алгоритм оценки устойчивости по результатам моделирования
- •Настройки Процессора анализа устойчивости
- •Частотный анализ
- •Особенности этапов частотного анализа
- •Настройки Процессора частотного анализа
- •Вынужденные колебания
- •Вводные сведения
- •Особенности этапов анализа вынужденных колебаний
- •Настройки препроцессора анализа вынужденных колебаний
- •Настройки процессора анализа вынужденных колебаний
- •Настройки постпроцессора и анализ результатов вынужденных колебаний
- •Анализ Усталости
- •Цикл напряжений. Основные характеристики
- •Кривая усталости
- •Методы коррекции напряжений
- •Оценка характеристик сопротивления усталости при сложном напряженном состоянии
- •Этапы анализа усталости
- •Результаты усталостного расчёта
- •Примеры расчётов деталей на усталостную прочность
- •Однособытийный усталостный расчет
- •Многособытийный усталостный расчет
- •Примеры результатов однособытийного усталостного расчёта
- •Пример результатов многособытийного усталостного расчёта
- •Тепловой анализ
- •Особенности этапов теплового анализа
- •Настройки Процессора теплового анализа
- •Примеры тепловых расчётов
- •Тепловой расчёт радиатора охлаждения. Установившийся режим
- •Расчёт времени нагревания радиатора охлаждения. Нестационарный режим
- •Расчёт времени остывания радиатора охлаждения. Нестационарный режим
- •Верификационные примеры
- •Примеры расчётов задач статики
- •Изгиб консольно-защемлённой балки под действием сосредоточенной нагрузки
- •Статический расчет круглой пластины, защемленной по контуру
- •Расчет сферического сосуда давления
- •Квадратная пластина под силой в центре
- •Цилиндрический резервуар со стенками постоянной толщины
- •Кручение бруса с круглым поперечным сечением
- •Стержень под действием собственного веса
- •Расчёт вращающегося сплошного диска постоянной толщины
- •Свободно опертая прямоугольная пластинка под синусоидальной нагрузкой
- •Температурные напряжения биметаллического элемента
- •Примеры расчётов задач устойчивости
- •Расчет устойчивости сжатого прямого стержня
- •Устойчивость квадратной пластины
- •Устойчивость прямоугольной пластины
- •Примеры задач частотного анализа
- •Определение собственных частот колебаний балки
- •Определение первой собственной частоты колебаний круглой пластинки
- •Свободные колебания сферического купола
- •Примеры задач теплового анализа
- •Установившаяся температура
- •Поток тепла в шаре
- •Теплопроводность цилиндрической стенки
- •Литература

Верификационные примеры
Температурные напряжения биметаллического элемента
В различных температурных регуляторах применяются так называемые биметаллические элементы. Биметаллический элемент представляет собой две жестко соединенные металлические пластинки с различными коэффициентами температурного расширения α1 ,α2 . При нагреве биметаллическая
пластинка изгибается за счёт различного удлинения её составляющих (см. рис.). Если один конец пластинки неподвижно закрепить, то второй (свободный) конец переместится на некоторую величину.
Рассчитаем, как изменяется кривизна поверхности спая биметаллического элемента в зависимости от температуры нагрева.
Пусть биметаллический элемент состоит из пластинок, имеющих толщины h1 =1.5мм, h2 = 0.9мм
и изготовленных из разных металлов (т.е. |
α1 = 2.4×10−5 К−1 , α2 =1.3×10−5 К−1 , E = 6.9×104 |
Н |
, |
|||||
|
||||||||
|
|
|
Н |
|
1 |
мм2 |
||
E |
|
= 2.1×105 |
, ν1 = 0.33 , ν2 = 0.28 ). Пластинки имеют одинаковую длину a = 50мм и ширину |
|||||
2 |
мм2 |
|||||||
|
|
|
|
|
|
|||
b =10мм. Элемент нагревается от T = 298.15 К (или T = 25 0C ) до T = 323.15 К (или T = 50 0C ). |
||||||||
|
|
|
|
0 |
0 |
|
|
Пусть |
1 |
– начальная кривизна поверхности спая, равная 0 ; |
|
|
1 |
– кривизна поверхности спая после |
|||||||||||||||||||||||||||||||||||||||||||
|
ρ0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ρ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
нагревания. Изменение кривизны найдём при помощи следующей формулы [9]: |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||
|
|
|
1 1 |
|
|
|
|
|
|
6(T −T0 )(α1 −α2 ) |
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
− |
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
ρ |
ρ |
|
|
|
|
|
2 |
|
|
2 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
(E1h1 |
− E2 h2 |
) |
|
|
+ 4(h |
+ h |
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E E |
2 |
h h |
(h |
+ h |
|
|
|
|
1 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
2 |
1 |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
Кривизна поверхности спая после нагревания биметаллического элемента |
|
1 |
=1.7179×10−4 |
|
мм−1 . |
||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ρ |
|
|
|
|
|
|
|
|
|
|
|
||
Выполнив расчет при помощи T-FLEX Анализ, получаем следующие результаты: |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Таблица 1. |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Параметры конечно-элементной сетки |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Число узлов при |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
Тип конечных элементов |
|
|
|
|
|
|
|
|
Число главных |
|
|
|
|
|
Число конечных |
||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
узлов |
|
|
|
|
|
|
|
|
расчёте задачи |
|
|
элементов |
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
квадратичный тетраэдр (10 узлов) |
|
|
|
|
|
|
|
1627 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5823 |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Таблица 2. |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Результат «Кривизна поверхности спая» |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
1 |
|
|
|
|
Поверхность Sij |
Численное решение |
|
|
Аналитическое решение |
|
Ошибка |
|
|
|
|
− |
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
ρ |
ρ |
|
|
|
|||||||||||||||||||||||||||||||||||||||
раздела |
Кривизна |
1 |
, мм−1 |
|
|
|
Кривизна |
|
|
1 |
, мм−1 |
|
|
|
|
|
|
|
δ = |
|
|
|
|
|
n |
|
|
×100% |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
пластинок i и j |
|
ρ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ρ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ρ |
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
S12 |
1.7426E-004 |
|
|
|
|
|
|
|
|
|
1.7179E-004 |
|
|
|
|
|
|
|
1.4349E+000 |
193