Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
170
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

Solving the equations, we obtain the displacements

u

 

 

2P / k

 

 

 

2

=

 

1

 

u3

2P / k1 + P / k

2

and the reaction force

F1 = −2P

Checking the Results

Deformed shape of the structure

Balance of the external forces

Order of magnitudes of the numbers

Notes About the Spring Elements

Suitable for stiffness analysis

Not suitable for stress analysis of the spring itself

Can have spring elements with stiffness in the lateral direction, spring elements for torsion, etc.

© 1997-2003 Yijun Liu, University of Cincinnati

19

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

Example 1.1

k1

k2

P

k3

 

1

2

3

4

x

 

Given:

For the spring system shown above,

 

 

k1

= 100 N / mm, k2

= 200 N / mm, k3

= 100 N / mm

 

P = 500 N,

u1 = u4 = 0

 

Find:

(a) the global stiffness matrix

 

 

(b) displacements of nodes 2 and 3

 

 

(c) the reaction forces at nodes 1 and 4

 

 

(d) the force in the spring 2

 

Solution:

 

 

 

 

 

(a) The element stiffness matrices are

 

 

k1

100

100

(N/mm)

(1)

 

=

 

 

 

100

100

 

 

 

k2

200

200

(N/mm)

(2)

 

=

 

 

 

200

200

 

 

 

k3

100

100

(N/mm)

(3)

 

=

 

 

 

100

100

 

 

© 1997-2003 Yijun Liu, University of Cincinnati

20

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

Applying the superposition concept, we obtain the global stiffness matrix for the spring system as

 

u1

u2

u3

u4

 

100

100

0

0

 

100

100 +200

200

0

 

K =

0

200

200 +100

 

 

 

100

 

0

0

100

100

 

 

 

or

100

100

0

0

 

100

300

200

0

 

K =

0

200

300

 

 

 

100

 

0

0

100

100

 

 

 

which is symmetric and banded.

Equilibrium (FE) equation for the whole system is

100

100

0

0

u

 

F

 

 

 

100

300

200

0

 

1

 

 

1

 

 

 

 

u2

 

 

0

 

(4)

0

200

300

 

 

u

 

=

P

 

 

100

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

0

0

100

100

u

 

F

 

 

 

 

 

 

 

 

4

 

 

4

 

 

(b) Applying the BC (u1 = u4 = 0) in Eq(4), or deleting the 1st and 4th rows and columns, we have

© 1997-2003 Yijun Liu, University of Cincinnati

21

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

 

300

200 u2

 

0

 

200

300

u

 

= P

(5)

 

 

 

3

 

 

 

Solving Eq.(5), we obtain

u

 

 

P / 250

2

(mm)

(6)

2

 

=

 

=

u3

 

3P / 500

3

 

 

(c)From the 1st and 4th equations in (4), we get the reaction forces F1 = −100u2 = −200 (N)

F4 = −100u3 = −300 (N)

(d)The FE equation for spring (element) 2 is

 

200

200 ui

fi

 

 

200

 

 

=

 

200

uj

f j

Here i = 2, j = 3 for element 2. Thus we can calculate the spring force as

F = f j = − fi = [200

u

 

200] 2

 

 

u3

 

= [200

2

200]

 

3

= 200 (N)

 

 

Check the results!

© 1997-2003 Yijun Liu, University of Cincinnati

22

Lecture Notes: Introduction to Finite Element Method

Chapter 1. Introduction

Example 1.2

 

4

k4

 

k1

 

4

2

k2

1

 

x

2

 

 

F 1

1

F 2 k3

3

3

5

Problem: For the spring system with arbitrarily numbered nodes and elements, as shown above, find the global stiffness matrix.

Solution:

First we construct the following

Element Connectivity Table

Element

Node i (1)

Node j (2)

 

 

 

1

4

2

2

2

3

3

3

5

4

2

1

 

 

 

which specifies the global node numbers corresponding to the local node numbers for each element.

© 1997-2003 Yijun Liu, University of Cincinnati

23

Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

Then we can write the element stiffness matrices as follows

 

 

u4

u2

 

 

 

u2

u3

 

k1

 

k

 

k

 

k2

 

k

 

k

 

 

=

 

1

1

 

=

 

2

 

2

 

 

k1

k1

 

k2

k2

 

 

u3

u5

 

 

 

u2

u1

 

k3

 

k

3

k

3

 

k4

 

k

4

k

4

 

=

 

 

 

=

 

 

 

 

k3

k3

 

k4

k4

Finally, applying the superposition method, we obtain the global stiffness matrix as follows

 

u1

 

 

 

u2

 

 

u3

 

u4

 

u5

 

k4

 

 

 

k4

 

0

 

0

 

0

 

k

4

k

1

+ k

2

+ k

4

k

2

k

1

0

 

 

 

 

 

 

 

 

 

 

K = 0

 

 

 

k2

 

k2 + k3

0

 

k3

 

 

0

 

 

 

k1

 

0

 

k1

 

0

 

 

 

 

 

 

 

 

 

 

0

 

 

 

0

 

 

k3

0

 

k3

 

 

 

 

 

 

 

 

 

The matrix is symmetric, banded, but singular.

© 1997-2003 Yijun Liu, University of Cincinnati

24

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]