Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
168
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

III. Damping

Two commonly used models for viscous damping.

A. Proportional Damping (Rayleigh Damping)

C =αM + βK

 

 

 

 

 

(17)

where the constants α & β are found from

ξ1 =

αω1

+

β

,

ξ2

=

 

αω2

+

β

,

 

 

2

 

2

 

2ω1

 

 

 

2ω2

with ω1, ω2 ,ξ1 & ξ2 (damping ratio) being selected.

Damping ratio

B. Modal Damping

Incorporate the viscous damping in modal equations.

© 1997-2003 Yijun Liu, University of Cincinnati

167

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

IV. Modal Equations

Use the normal modes (modal matrix) to transform the coupled system of dynamic equations to uncoupled system of equations.

We have

[K ω i

2 M ]ui

= 0 ,

 

 

i = 1,2,..., n

where the normal mode

 

i

satisfies:

u

u iT

K u j =

0 ,

 

 

for i j,

 

M u j

=

0 ,

 

u iT

 

 

and

 

 

 

 

 

 

 

 

u iT M u i

= 1,

 

for i = 1, 2, …, n.

 

 

 

ω i2

 

,

u iT K u i =

 

 

Form the modal matrix:

 

 

 

 

 

Φ ( n × n )

= [u 1 u 2 L u n ]

We can verify that

ω12

ΦT = = 0M0

ΦT = I.

0

L 0

 

 

ω2

M

 

 

2

 

 

(Spectral matrix),

 

O 0

 

 

 

L 0 ω2

 

 

 

n

 

 

Transformation for the displacement vector,

u = z1 u1 + z 2 u 2 + L + z n u n = Φ z ,

(18)

(19)

(20)

(21)

© 1997-2003 Yijun Liu, University of Cincinnati

168

Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

where

 

z1

(t )

 

 

 

 

z =

z2

(t )

 

M

 

 

 

 

 

 

 

 

 

zn

(t )

are called principal coordinates. Substitute (21) into the dynamic equation:

M Φ &z& + C Φ z& + K Φ z = f ( t ).

Pre-multiply by ΦT, and apply (20):

z + C φ

z + Ω z = p ( t ),

 

 

 

(22)

&&

 

 

&

 

 

 

 

 

where C φ

= α I + β

(for proportional damping),

p

= Φ T f ( t ) .

 

 

 

 

 

Introduce modal damping:

 

 

 

 

 

 

 

2 ξ 1ω 1

0

L

0

 

 

C φ

=

 

0

2 ξ 2 ω 2

 

 

 

 

 

M

 

O

M

 

. (23)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

L

2 ξ n ω n

 

© 1997-2003 Yijun Liu, University of Cincinnati

169

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

Equation (22) becomes,

&&

+

&

2

z i

= p i ( t ), i = 1,2,…,n. (24)

z i

2 ξ iω i z i

+ ω i

Equations in (22) or (24) are called modal equations. These equations are uncoupled, second-order differential equations, which are much easier to solve than the original dynamic equation (a coupled system).

To recover u from z, apply transformation (21) again, once z is obtained from (24).

Notes:

Only the first few modes may be needed in constructing the modal matrix Φ (i.e., Φ could be an n×m rectangular matrix with m<n). Thus, significant reduction in the size of the system can be achieved.

Modal equations are best suited for problems in which higher modes are not important (i.e., structural vibrations, but not for structures under a shock load).

© 1997-2003 Yijun Liu, University of Cincinnati

170

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]