Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
170
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

VI. Transient Response Analysis

(Dynamic Response/Time-History Analysis)

Structure response to arbitrary, time-dependent loading.

f(t)

t

u(t)

t

Compute responses by integrating through time:

u 1

u n u n+1

u 2

t 0 t 1 t 2

t n t n+1

t

© 1997-2003 Yijun Liu, University of Cincinnati

172

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

Equation of motion at instance tn , n = 0, 1, 2, 3, :

Mu&&n +Cu&n +Kun = fn.

Time increment: t=tn+1-tn, n=0, 1, 2, 3, .

There are two categories of methods for transient analysis.

A.Direct Methods (Direct Integration Methods)

Central Difference Method

Approximate using finite difference:

&

=

 

1

 

(

u n

+ 1

u n 1 ),

 

 

 

u n

2

t

 

 

 

 

 

 

 

 

&&

=

 

1

 

 

( u

n

+ 1

2 u n + u n 1 )

 

 

 

 

 

u n

(

t ) 2

 

 

 

 

 

 

 

 

Dynamic equation becomes,

 

1

 

 

 

 

1

 

 

 

M

 

 

(un+1

2un + un1 )

+ C

 

(un+1

un1 )

+ Kun = fn ,

(t)

2

2t

 

 

 

 

 

 

 

 

which yields,

Aun+1 = F(t) where

F(t )

= fn K

 

A =

 

 

1

 

M +

 

 

1

C,

 

 

 

 

 

(t )2

 

2t

 

 

 

 

2

 

 

M

u n

 

1

 

M

1

C

u n 1.

2

 

 

2

 

 

 

 

 

 

2 t

 

 

 

(t )

 

 

 

 

(t )

 

 

un+1 is calculated from un & un-1, and solution is marching from t0 ,t1, L tn ,tn +1, L , until convergent.

© 1997-2003 Yijun Liu, University of Cincinnati

173

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

This method is unstable if t is too large.

Newmark Method: Use approximations:

un+1

&

+

(t)2

 

&&

&&

&&

= L)

 

 

un + ∆tun

2

 

[(1 2β )un + 2

βun+1

],(un+1

un+1

 

 

+γun+1 ],

 

 

 

un + ∆t[(1 γ )un

 

 

 

&

&

 

&&

&&

 

 

 

where β & γ are chosen constants. These lead to

Au n +1 = F ( t ) where

A = K +

γ

 

C +

1

M ,

β t

 

β ( t ) 2

 

 

 

 

F ( t ) = f ( f n + 1

, γ , β , t , C , M , u n , u n , u n ).

 

 

 

 

 

& &&

This method is unconditionally stable if

2 β

γ

1

.

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

e . g .,

γ

=

 

1

 

 

,

β

=

1

2

 

 

4

 

 

 

 

 

 

 

 

which gives the constant average acceleration method.

Direct methods can be expensive! (the need to compute A-1, often repeatedly for each time step).

© 1997-2003 Yijun Liu, University of Cincinnati

174

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

B. Modal Method

First, do the transformation of the dynamic equations using the modal matrix before the time marching:

 

m

 

u = u i z i ( t ) z ,

 

i =1

i = 1,2, , m.

z i + 2ξ iω i z i + ω i z i

= p i ( t ),

&&

&

 

Then, solve the uncoupled equations using an integration method. Can use, e.g., 10%, of the total modes (m= n/10).

Uncoupled system,

Fewer equations,

No inverse of matrices,

More efficient for large problems.

Comparisons of the Methods

Direct Methods

Modal Method

 

 

 

 

Small model

Large model

More accurate (with small t)

Higher modes ignored

Single loading

Multiple loading

Shock loading

Periodic loading

 

 

 

 

© 1997-2003 Yijun Liu, University of Cincinnati

175

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]