Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
170
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

Chapter 7. Structural Vibration and

Dynamics

Natural frequencies and modes

F(t)

 

 

 

 

Frequency response (F(t)=Fo sinωt)

 

 

 

 

 

 

Transient response (F(t) arbitrary)

 

 

 

I. Basic Equations

A. Single DOF System

k

f=f(t) m

c

ku

c u

m

f(t)

&

 

 

x, u

m - mass

k - stiffness

c - dampingf (t) - force

From Newton’s law of motion (ma = F), we have mu&&= f(t)kucu&,

i.e.

mu+cu+ku= f(t),

 

 

 

(1)

&& &

 

 

 

 

&

and u&&= d

2

2

.

where u is the displacement, u = du / dt

 

u / dt

© 1997-2003 Yijun Liu, University of Cincinnati

157

Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

Free Vibration: f(t) = 0 and no damping (c = 0)

 

Eq. (1) becomes

(2)

mu+ku=0 .

&&

 

(meaning: inertia force + stiffness force = 0)

 

Assume:

 

u(t) = U sin (ωt) ,

 

where ω is the frequency of oscillation, U the amplitude.

Eq. (2) yields

 

2 m sin( ωt)+kU sin( ωt)=0

 

i.e.,

 

[ω2 m+k]U =0 .

 

For nontrivial solutions for U, we must have

 

[ω2 m+k]=0 ,

 

which yields

 

ω = mk .

(3)

This is the circular natural frequency of the single DOF system (rad/s). The cyclic frequency (1/s = Hz) is

f =

ω

,

(4)

2π

 

 

 

© 1997-2003 Yijun Liu, University of Cincinnati

158

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

u

 

 

 

 

u = U s in w t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T = 1 / f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U n d a m p e d F r e e V ib r a t io n

 

 

With non-zero damping c, where

 

 

0 < c < cc = 2mω = 2 k m (cc = critical damping)

(5)

we have the damped natural frequency:

 

 

ωd =ω

1ξ 2 ,

 

(6)

where ξ =

c

(damping ratio).

 

 

cc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For structural damping: 0 ξ < 0.15

(usually 1~5%)

ωd ω.

(7)

Thus, we can ignore damping in normal mode analysis. u

t

Damped Free Vibration

© 1997-2003 Yijun Liu, University of Cincinnati

159

Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

B. Multiple DOF System

Equation of Motion

Equation of motion for the whole structure is

&&

&

(8)

Mu

+ Cu + Ku = f (t) ,

in which:

u nodal displacement vector,

 

 

M mass matrix,

 

 

C damping matrix,

 

 

K stiffness matrix,

 

 

f forcing vector.

 

Physical meaning of Eq. (8):

Inertia forces + Damping forces + Elastic forces = Applied forces

Mass Matrices

Lumped mass matrix (1-D bar element):

m1

=

ρAL

1

ρ,A,L 2

m =

ρAL

 

 

 

 

 

 

 

u1

 

u2

2

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

Element mass matrix is found to be

 

 

ρAL

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

m =

 

 

ρAL

 

 

 

 

0

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

1442443

 

 

 

diagonal matrix

© 1997-2003 Yijun Liu, University of Cincinnati

160

Lecture Notes: Introduction to Finite Element Method

Chapter 7. Structural Vibration and Dynamics

In general, we have the consistent mass matrix given by

m = V ρNT NdV

(9)

where N is the same shape function matrix as used for the displacement field.

This is obtained by considering the kinetic energy:

Κ =

 

1

&T

&

 

 

 

 

 

(cf.

1

mv

2

)

2

 

 

 

 

 

2

 

u

mu

 

 

 

 

 

 

=

1

V

&2

dV

=

1

 

& T &

 

 

 

 

 

 

 

 

 

 

 

 

2

ρu

2

 

V ρ (u ) udV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

V

 

&

 

T

 

&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

ρ (Nu ) (Nu )dV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

&T

V ρN

T

 

 

&

 

 

 

 

2

u

 

NdV u

 

 

 

 

 

 

14243

 

 

 

 

m

Bar Element (linear shape function):

m = V

1 ξ

 

ξ]ALdξ

 

ρ

[1

ξ

 

 

ξ

 

 

 

 

 

1/ 3

1/ 6 u

 

= ρAL

 

 

&&

(10)

 

1

 

1/ 6

1/ 3 u2

 

 

 

 

 

&&

 

Element mass matrices:

local coordinates to global coordinates

assembly of the global structure mass matrix M.

© 1997-2003 Yijun Liu, University of Cincinnati

161

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]