Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
170
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 6. Solid Elements for 3-D Problems

III. Typical 3-D Solid Elements

Tetrahedron:

linear (4 nodes)

quadratic (10 nodes)

Hexahedron (brick):

linear (8 nodes)

quadratic (20 nodes)

Penta:

linear (6 nodes)

quadratic (15 nodes)

Avoid using the linear (4-node) tetrahedron element in 3-D stress analysis (Inaccurate! However, it is OK for static deformation or vibration analysis).

© 1997-2002 Yijun Liu, University of Cincinnati

144

Lecture Notes: Introduction to Finite Element Method

Chapter 6. Solid Elements for 3-D Problems

Element Formulation:

Linear Hexahedron Element

3

4

y 8

7

2

 

1

 

5

6

 

 

x

 

z

mapping (xyz↔ξηζ)

η

(-1≤ ξ,η,ζ ≤ 1)

 

 

(-1,1,-1) 4

3 (1,1,-1)

 

(-1,1,1) 8

7 (1,1,1)

 

o

ξ

 

(-1,-1,-1) 1

2 (1,-1,-1)

 

(-1,-1,1) 5

6 (1,-1,1)

 

ζ

Displacement field in the element:

8

8

8

 

u =Ni ui ,

v =Ni vi

, w =Ni wi

(11)

i=1

i=1

1i=1

 

© 1997-2002 Yijun Liu, University of Cincinnati

145

Lecture Notes: Introduction to Finite Element Method

Chapter 6.

Solid Elements for 3-D Problems

Shape functions:

 

 

 

 

N1 (ξ,η,ζ ) =

1

(1ξ)(1η)(1ζ ) ,

 

 

8

 

 

 

N2 (ξ,η,ζ ) =

1

(1+ξ)(1η)(1ζ ) ,

 

 

8

 

 

 

N3 (ξ,η,ζ ) =

1

(1+ξ)(1+η)(1ζ ) ,

(12)

 

8

 

 

 

M

 

 

M

 

N8 (ξ,η,ζ ) =

1

(1ξ)(1+η)(1+ζ ) .

 

 

8

 

 

 

Note that we have the following relations for the shape functions:

Ni (ξ j ,ηj ,ζ j ) =δij , i, j =1,2,L,8.

8

Ni (ξ,η,ζ ) =1.

i =1

Coordinate Transformation (Mapping):

8

x =Ni xi

i =1

8

8

 

, y =Ni yi

, z =Ni zi .

(13)

i =1

i =1

 

The same shape functions are used as for the displacement field.

Isoparametric element.

© 1997-2002 Yijun Liu, University of Cincinnati

146

Lecture Notes: Introduction to Finite Element Method

Chapter 6. Solid Elements for 3-D Problems

Jacobian Matrix:

 

u

x

 

ξ

 

 

ξ

 

 

 

 

 

x

 

u

=

 

 

 

 

 

 

 

 

η

 

η

 

u

 

x

 

 

 

 

 

ζ

ζ

y

ξ y

η y

ζ

z

u

 

 

 

 

 

 

 

 

ξ

x

 

 

 

 

 

 

z

 

 

 

u

 

 

 

 

 

y

 

(14)

 

 

η

 

 

z

 

 

 

u

 

 

 

 

 

 

 

 

ζ

 

 

 

 

 

 

z

 

J Jacobian matrix

 

 

u

 

 

 

 

x

 

 

 

 

 

 

 

1

 

 

u

= J

 

y

 

 

 

 

 

 

 

 

 

u

 

 

 

 

 

 

 

 

 

z

 

 

and

v

 

 

 

 

v

 

 

 

 

 

 

 

x

 

 

ξ

 

 

 

1

 

 

v

 

= J

 

v

 

y

 

 

 

 

 

η

 

 

 

 

 

 

v

 

 

 

 

v

 

 

 

 

 

 

 

 

 

 

ζ

z

 

 

 

 

uξuηuζ

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

8

N

 

 

 

 

 

i

 

 

,

 

 

=

 

ui

,etc.

ξ

ξ

 

 

 

 

i =1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15)

also for w.

© 1997-2002 Yijun Liu, University of Cincinnati

147

Lecture Notes: Introduction to Finite Element Method

Chapter 6. Solid Elements for 3-D Problems

 

ε x

 

 

 

 

ε

 

 

 

 

 

ε

y

 

ε=

 

z

 

=

 

 

 

 

γ xy

 

 

γ

 

 

 

 

 

 

yz

 

 

γ zx

 

 

 

 

u

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

v

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

w

 

 

 

 

 

 

 

 

 

 

 

x

z

 

=Luse (15)

= B d

 

 

+

u

 

x

 

 

 

 

 

 

 

 

y

 

 

 

w

+

 

v

 

 

 

y

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

u

 

+ w

 

 

z

 

 

x

 

 

where d is the nodal displacement vector,

 

i.e.,

 

ε= Bd

(16)

(6×1) (6×24)×(24×1)

© 1997-2002 Yijun Liu, University of Cincinnati

148

Lecture Notes: Introduction to Finite Element Method

Chapter 6. Solid Elements for 3-D Problems

Strain energy,

U =

1 σT εdV =

1 ()T εdV

 

2 V

2 V

=1 εT dV

2 V

=

1

d

T

T

EB dV

 

2

 

B

d

 

 

V

 

 

Element stiffness matrix, k =BT EB dV

V

(24×24) (24×6)×(6×6)×(6×24)

In ξηζ coordinates:

dV =(det J ) dξ dηdζ

1 1 1

k = ∫ ∫ ∫BT E B (det J) dξ dη dζ

1 1 1

( Numerical integration)

(17)

(18)

(19)

(20)

3-D elements usually do not use rotational DOFs.

© 1997-2002 Yijun Liu, University of Cincinnati

149

Lecture Notes: Introduction to Finite Element Method

Chapter 6. Solid Elements for 3-D Problems

Treatment of distributed loads:

Distributed loads Nodal forces

pA/3 pA/12

p

Area =A

Nodal forces for 20-node

 

Hexahedron

Stresses:

σ== EBd

Principal stresses:

σ1 ,σ2 ,σ3 .

von Mises stress:

σe =σVM =

1

(σ1 σ2 )2 + (σ2 σ3 )2 + (σ3 σ1 )2 .

 

2

 

Stresses are evaluated at selected points (including nodes) on each element. Averaging (around a node, for example) may be employed to smooth the field.

Examples: …

© 1997-2002 Yijun Liu, University of Cincinnati

150

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]