Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
170
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 6. Solid Elements for 3-D Problems

II. Finite Element Formulation

Displacement Field:

N

u = N i ui

i =1

 

N

 

v = N i vi

(8)

i =1

N

w= N i wi

i=1

Nodal values

In matrix form:

uv

w (3×1)

or

N1 = 00

0

0

N2

0

0

N1

0

0

N2

0

0

N1

0

0

N2

u =N d

L

L

L (3×3N )

u1v1w1u2v2w2M (3N

(9)

×1)

Using relations (5) and (8), we can derive the strain vector

ε =B d

(6×1) (6×3N)×(3N×1)

© 1997-2002 Yijun Liu, University of Cincinnati

142

Lecture Notes: Introduction to Finite Element Method

Chapter 6. Solid Elements for 3-D Problems

Stiffness Matrix:

 

k = BT EB dv

(10)

v

(3×N) (3N×6)×(6×6)×(6×3N)

Numerical quadratures are often needed to evaluate the above integration.

Rigid-body motions for 3-D bodies (6 components): 3 translations, 3 rotations.

These rigid-body motions (causes of singularity of the system of equations) must be removed from the FEA model to ensure the quality of the analysis.

© 1997-2002 Yijun Liu, University of Cincinnati

143

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]