Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
170
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 3. Two-Dimensional Problems

Linear Strain Triangle (LST or T6)

This element is also called quadratic triangular element.

 

 

 

v3

u3

 

 

 

 

3

 

 

 

 

 

 

 

 

v5

 

 

y

v6

 

 

 

 

 

 

 

 

 

5

u5

 

u6

6

 

 

 

 

 

v1

 

 

 

 

v2

 

 

 

 

 

 

 

 

1

u1

 

4

v4

u4

2

u2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

Quadratic Triangular Element

There are six nodes on this element: three corner nodes and three midside nodes. Each node has two degrees of freedom (DOF) as before. The displacements (u, v) are assumed to be quadratic functions of (x, y),

u = b + b x + b y + b x2

+ b xy + b y2

 

1

2

3

4

5

6

(31)

v = b + b x + b y + b x

2 + b xy + b y2

 

7

8

9

10

11

12

 

where bi (i = 1, 2, ..., 12) are constants. From these, the strains are found to be,

εx = b2 + 2b4 x + b5 y

 

εy = b9 + b11 x + 2b12 y

(32)

γ xy = (b3 + b8 ) +(b5 + 2b10 )x +(2b6 + b11 ) y

 

which are linear functions. Thus, we have the “linear strain triangle” (LST), which provides better results than the CST.

© 1997-2002 Yijun Liu, University of Cincinnati

91

Lecture Notes: Introduction to Finite Element Method

Chapter 3. Two-Dimensional Problems

In the natural coordinate system we defined earlier, the six shape functions for the LST element are,

N1 = ξ(2ξ 1)

 

N2

= η(2η 1)

 

N3

=ζ(2ζ 1)

(33)

N4 = 4ξη

 

N5

= 4ηζ

 

N6

= 4ζ ξ

 

in which ζ =1ξ η. Each of these six shape functions

represents a quadratic form on the element as shown in the figure.

ξ=0

3 ξ=1/2

6 5

ξ=1

1

N1

 

 

1

4

2

Shape Function N1 for LST

Displacements can be written as,

6

6

 

u = Ni ui ,

v = Ni vi

(34)

i=1

i=1

 

The element stiffness matrix is still given by

k = BT EB dV , but here BTEB is quadratic in x and y. In

V

general, the integral has to be computed numerically.

© 1997-2002 Yijun Liu, University of Cincinnati

92

Lecture Notes: Introduction to Finite Element Method

Chapter 3. Two-Dimensional Problems

Linear Quadrilateral Element (Q4)

 

 

v4

η

v3

u3

 

 

 

 

η =1

4

u4

3

ξ

 

 

 

 

 

v1

2

v2

 

 

 

u2

 

 

 

1

y

η

= −1

u1

 

 

 

 

 

 

ξ = −1

ξ =1

x

Linear Quadrilateral Element

There are four nodes at the corners of the quadrilateral shape. In the natural coordinate system (ξ,η), the four shape

functions are,

N1

=

1

(1ξ)(1η),

 

N2

=

1

(1+ξ)(1η)

 

 

4

 

 

 

 

4

(35)

 

 

1

 

 

 

 

1

N3

=

(1+ξ)(1+η),

N4

=

(1ξ)(1+η)

 

 

4

 

 

 

 

4

 

 

 

4

 

 

 

 

 

 

Note that Ni =1 at any point inside the element, as expected.

 

 

i=1

 

 

 

 

 

 

The displacement field is given by

 

4

 

 

4

 

 

 

u = Ni ui ,

v = Ni vi

(36)

 

i=1

 

 

i=1

 

 

 

which are bilinear functions over the element.

© 1997-2002 Yijun Liu, University of Cincinnati

93

Lecture Notes: Introduction to Finite Element Method

Chapter 3. Two-Dimensional Problems

Quadratic Quadrilateral Element (Q8)

This is the most widely used element for 2-D problems due to its high accuracy in analysis and flexibility in modeling.

 

 

η

 

 

η =1

4

7

3

ξ

 

 

 

 

 

 

8

 

6

5

2

1

 

 

 

y η = −1

 

 

ξ = −1

 

ξ =1

x

Quadratic Quadrilateral Element

There are eight nodes for this element, four corners nodes and four midside nodes. In the natural coordinate system (ξ,η),

the eight shape functions are,

N1

=

1

(1ξ)(η 1)(ξ +η +1)

 

 

4

 

N2

=

1

(1+ξ)(η 1)(η ξ +1)

 

 

4

(37)

 

 

1

N3

=

(1+ξ)(1+η)(ξ +η 1)

 

 

4

 

N4

=

1

(ξ 1)(η +1)(ξ η +1)

 

 

4

 

© 1997-2002 Yijun Liu, University of Cincinnati

94

Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

N5

=

1

(1η)(1ξ2 )

 

 

2

 

N6

=

1

(1+ξ)(1η2 )

 

 

2

 

N7

=

1

(1+η)(1ξ2 )

 

 

2

 

N8

=

1

(1ξ)(1η2 )

 

 

2

 

8

 

Again, we have Ni

=1 at any point inside the element.

i=1

 

The displacement field is given by

8

8

 

u = Ni ui ,

v = Ni vi

(38)

i=1

i=1

 

which are quadratic functions over the element. Strains and stresses over a quadratic quadrilateral element are linear functions, which are better representations.

Notes:

Q4 and T3 are usually used together in a mesh with linear elements.

Q8 and T6 are usually applied in a mesh composed of quadratic elements.

Quadratic elements are preferred for stress analysis, because of their high accuracy and the flexibility in modeling complex geometry, such as curved boundaries.

© 1997-2002 Yijun Liu, University of Cincinnati

95

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]