Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
170
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 3. Two-Dimensional Problems

Chapter 3. Two-Dimensional Problems

I. Review of the Basic Theory

In general, the stresses and strains in a structure consist of six components:

σx , σy , σz , τxy , τyz , τzx

for stresses,

and

εx , εy , εz , γ xy , γ yz , γ zx

for strains.

σ y

 

τyz

τ xy

 

σx

y

 

τzx

 

 

σz

x

z

Under contain conditions, the state of stresses and strains can be simplified. A general 3-D structure analysis can, therefore, be reduced to a 2-D analysis.

© 1997-2002 Yijun Liu, University of Cincinnati

75

Lecture Notes: Introduction to Finite Element Method

Chapter 3. Two-Dimensional Problems

Plane (2-D) Problems

Plane stress:

σz =τyz =τzx = 0 (εz 0) (1)

A thin planar structure with constant thickness and loading within the plane of the structure (xy-plane).

y

y

p

x z

Plane strain:

εz =γ yz =γ zx = 0 (σz 0) (2)

A long structure with a uniform cross section and transverse loading along its length (z-direction).

y

y

p

x z

© 1997-2002 Yijun Liu, University of Cincinnati

76

Lecture Notes: Introduction to Finite Element Method

Chapter 3. Two-Dimensional Problems

Stress-Strain-Temperature (Constitutive) Relations

For elastic and isotropic materials, we have,

εx

 

1/ E

ν / E

0

σx

 

 

 

εx0

 

 

 

ε

 

 

= −ν / E

1/ E

0

σ

 

+

 

ε

y0

 

(3)

 

 

y

 

 

 

y

 

 

 

 

 

γ

 

 

0

0

1/ G τ

 

 

γ

xy0

 

 

 

 

xy

 

 

 

xy

 

 

 

 

 

or,

ε = E1σ +ε0

where ε0 is the initial strain, E the Young’s modulus, ν the Poisson’s ratio and G the shear modulus. Note that,

G =

E

(4)

2(1+ν)

 

 

which means that there are only two independent materials constants for homogeneous and isotropic materials.

We can also express stresses in terms of strains by solving the above equation,

σ

 

 

 

 

 

1 ν

0

 

 

ε

 

 

ε

 

 

 

x

 

 

 

 

x

x0

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σy

=

 

 

ν 1

0

 

 

 

εy

εy0

 

(5)

 

 

 

 

 

 

 

1ν2

 

 

 

 

 

 

 

 

 

 

 

τ

 

 

 

 

 

0 0

(1ν) / 2

 

γ

xy

γ

xy0

 

 

xy

 

 

 

 

 

 

 

 

 

 

 

or,

σ = Eε +σ0

where σ0 = −Eε0 is the initial stress.

© 1997-2002 Yijun Liu, University of Cincinnati

77

Lecture Notes: Introduction to Finite Element Method

Chapter 3. Two-Dimensional Problems

The above relations are valid for plane stress case. For plane strain case, we need to replace the material constants in the above equations in the following fashion,

 

 

 

 

E

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1ν2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

 

 

 

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

(6)

 

 

 

 

 

 

1

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, the stress is related to strain by

 

 

 

 

 

 

 

 

 

 

 

σ

 

 

 

 

 

 

 

 

 

 

 

1 ν

ν

0

 

 

ε

 

 

 

ε

 

 

x

 

 

 

 

 

 

 

 

 

 

x

 

x0

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ

 

=

 

 

 

 

 

ν

1 ν

0

 

 

ε

 

ε

 

 

y

 

 

 

 

 

 

 

 

 

 

y

 

y0

 

 

 

(1 + ν)(1

2ν)

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

τ

 

 

 

 

 

 

 

 

 

 

 

0

(1 2ν) / 2

 

γ

 

 

 

γ

xy0

 

xy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xy

 

 

 

in the plane strain case.

Initial strains due to temperature change (thermal loading) is given by,

εεγ

x0

y0

xy0

 

αT

 

 

 

 

 

(7)

 

= αT

 

 

0

 

 

 

 

 

 

where α is the coefficient of thermal expansion, T the change of temperature. Note that if the structure is free to deform under thermal loading, there will be no (elastic) stresses in the structure.

© 1997-2002 Yijun Liu, University of Cincinnati

78

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]