Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
170
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

Equivalent Nodal Loads of Distributed Transverse Load

 

 

q

i

x L

j

 

qL/2

qL/2

qL2/12

 

qL2/12

i

 

j

 

 

This can be verified by considering the work done by the distributed load q.

q

L L

qL qL/2

qL2/12

L L

© 1997-2002 Yijun Liu, University of Cincinnati

61

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

Example 2.6

y

p

 

 

 

 

 

1

E,I

2

x

 

L

 

 

Given: A cantilever beam with distributed lateral load p as shown above.

Find: The deflection and rotation at the right end, the reaction force and moment at the left end.

Solution: The work-equivalent nodal loads are shown below,

y

 

f

 

 

 

 

 

 

 

m

1

E,I

2

x

 

L

 

 

where

f = pL / 2,

m = pL2 / 12

Applying the FE equation, we have

© 1997-2002 Yijun Liu, University of Cincinnati

62

Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

 

12

 

 

6L 12 6L v1

 

F1Y

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

EI

 

6L

 

4L

 

6L

2L

θ1 =

M1

 

L3

12

 

6L 12 6L v2

 

F2Y

 

 

 

 

6L

 

2

6L

2

 

 

 

M

 

 

 

 

 

 

2L

 

4L

θ

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

Load and constraints (BC’s) are,

 

 

 

 

 

 

 

 

F2Y = − f ,

 

 

 

 

M2 = m

 

 

 

 

 

 

 

v1 =θ1 = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

Reduced equation is,

 

 

 

 

 

 

 

 

 

 

 

 

 

EI

12

 

6L v2

 

f

 

 

 

 

 

 

L3

6L

 

4L2 θ

= m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

Solving this, we obtain,

 

 

 

 

 

 

 

 

 

 

 

v2

 

=

 

L

 

2L2 f

+

3Lm

pL4

/ 8EI

 

 

 

 

 

 

 

3Lf

+

 

=

 

 

 

 

 

(A)

 

 

 

 

 

 

 

θ2

 

 

6EI

6m

pL3

/ 6EI

 

These nodal values are the same as the exact solution. Note that the deflection v(x) (for 0 < x< 0) in the beam by the FEM is, however, different from that by the exact solution. The exact solution by the simple beam theory is a 4th order polynomial of x, while the FE solution of v is only a 3rd order polynomial of x.

If the equivalent moment m is ignored, we have,

v2

 

=

L

2L2

f

pL4

/ 6EI

 

 

 

 

 

3Lf

 

=

 

(B)

 

θ2

 

 

6EI

 

pL3

/ 4EI

 

The errors in (B) will decrease if more elements are used. The

© 1997-2002 Yijun Liu, University of Cincinnati

63

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

equivalent moment m is often ignored in the FEM applications. The FE solutions still converge as more elements are applied.

From the FE equation, we can calculate the reaction force and moment as,

F1Y

 

=

L3 12

6L v2

 

 

pL / 2

M

 

 

 

6L 2L2 θ

 

= 5pL2 / 12

1

EI

 

 

 

 

 

2

 

 

 

where the result in (A) is used. This force vector gives the total effective nodal forces which include the equivalent nodal forces for the distributed lateral load p given by,

pL / 2pL2 / 12

The correct reaction forces can be obtained as follows,

F

 

 

pL

/ 2

pL / 2

 

 

pL

1Y

 

=

 

 

 

=

 

 

M1

5pL2

/ 12

pL2 / 12

pL2

/ 2

Check the results!

© 1997-2002 Yijun Liu, University of Cincinnati

64

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]