Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
170
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

Distributed Load

 

 

q

i

x

j

 

 

qL/2

qL/2

i

j

Uniformly distributed axial load q (N/mm, N/m, lb/in) can be converted to two equivalent nodal forces of magnitude qL/2. We verify this by considering the work done by the load q,

Wq = L

21 uqdx = 21 1

u(ξ)q( Ldξ) = qL2

1

u(ξ)dξ

0

0

 

0

 

1

= qL2 [Ni (ξ)

0

1

= qL2 [1ξ

0

N

 

u

 

(ξ) i dξ

 

j

] uj

ξ]dξ uuij

=

1

qL

qL ui

2

 

2

 

 

 

2

uj

 

1

[ui

qL / 2

=

2

uj ] qL / 2

 

 

 

 

 

 

© 1997-2002 Yijun Liu, University of Cincinnati

38

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

that is,

Wq

=

1

u

T

fq

with fq

qL / 2

2

 

=

 

 

 

 

 

 

 

qL / 2

Thus, from the U=W concept for the element, we have 21 uT ku = 21 uT f + 21 uT fq

which yields

ku = f +fq

The new nodal force vector is

f +fq

fi

+qL / 2

=

 

 

f j

+qL / 2

In an assembly of bars,

q

1

2

3

qL/2

qL

qL/2

1

2

3

(22)

(23)

(24)

(25)

© 1997-2002 Yijun Liu, University of Cincinnati

39

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

Bar Elements in 2-D and 3-D Space

2-D Case

y

 

 

 

j

x

 

 

 

 

Y

 

ui

 

θ

 

 

i

vi

 

 

ui

 

 

 

 

 

 

 

 

X

 

 

 

Local

 

 

Global

 

x, y

 

 

X, Y

 

u'

, v'

 

 

ui , vi

 

i

i

 

 

 

 

1 dof at a node

2 dof’s at a node

Note: Lateral displacement vidoes not contribute to the stretch of the bar, within the linear theory.

Transformation

ui' = ui

cosθ + vi

u

 

sinθ = [l m]

i

 

 

 

vi

 

vi' = −ui sinθ + vi cosθ = [m

u

l]

i

 

 

 

vi

where l = cosθ,

m = sinθ .

 

 

 

© 1997-2002 Yijun Liu, University of Cincinnati

40

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

In matrix form,

u'

 

l

m ui

i'

=

 

 

vi

m

l vi

or,

ui' = T~ui

where the transformation matrix

~

 

l

m

T =

 

 

 

m

l

is orthogonal, that is, T~1 = T~T .

For the two nodes of the bar element, we have

ui'

 

l

 

'

m

vi

 

 

=

 

u

'j

0

 

'

 

0

v j

 

or,

u' = Tu

m

0

0

ui

l

0

0

 

 

 

vi

0

l

 

 

 

m u j

0

m

l

 

 

 

v j

T~ 0 with T = ~

0 T

The nodal forces are transformed in the same way, f ' = Tf

(26)

(27)

(28)

(29)

(30)

© 1997-2002 Yijun Liu, University of Cincinnati

41

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]