- •I. Векторная алгебра и аналитическая геометрия.
- •1. Декартовы координаты на плоскости. Операции над векторами.
- •2. Два определения скалярного произведения.
- •3. Прямая на плоскости и различные формы ее представления.
- •4. Расстояние от точки до прямой на плоскости
- •5. Взаимное расположение прямых на плоскости.
- •6. Декартовы координаты в пространстве. Задача о делении отрезка в данном отношении.
- •7. Операции над векторами в пространстве.
- •8. Векторное произведение и его свойства
- •9.Смешанное произведение и его свойства
- •11.Расстояние от точки до плоскости.
- •16. Расстояние между прямой и плоскостью, между двумя прямыми
- •17.. Системы координат (декартовы, полярные, цилиндрические, сферические).
- •II. Линейная алгебра}
- •1.Матрица,примеры и операции над матрицей.
- •2. Алгебра матриц (сложение, умножение на число, умножение матриц, линейная комбинация, транспонирование)
- •3. Подстановки, транспозиции и их свойства.
- •4 Определитель матрицы. Примеры применения.
- •5.Свойства определителя
- •6.Свойства определителей
- •1)Обратная матрица
- •2)Теорема об определителе произведения матриц
- •9. Методы обращения матрицы.
- •10. Ранг матрицы и его свойства.
- •11. Системы линейных уравнений. Теорема Кронеккера-Капелли.
- •12. Линейная зависимость векторов. Базис n - мерного пространства
- •13. Системы линейных уравнений. Метод Крамера решения систем линейных уравнений.
- •14Системы линейных уравнений. Метод Гаусса решения систем линейных уравнений
- •15. Собственные векторы и собственные значения матрицы.
- •16.Ортонормированные системы векторов и их свойства
- •17 Линейные операторы. Матрица линейного оператора.
- •18. Матрица линейного преобразования координат.
- •20. Классификация кривых второго порядка.
- •21. Классификация поверхностей второго порядка.
- •III. Дифференциальное исчисление
- •2.Последовательности.
- •3.Предел последовательности. Теорема Больцано-Вейерштрасса.
- •4. Бесконечно малые и бесконечно большие последовательности. Их свойства. Бесконечно малые и бесконечно большие последовательности и их свойства.
- •5. Свойства пределов последовательности, связанные с арифметическими операциями.
- •6.Предел функции. Свойства предела функции в точке
- •7Основные теоремы о пределах. Арифметические операции над пределами.
- •8.Первый замечательный предел
- •9.Второй замечательный предел
- •10. Бесконечно малые функции. Свойства бесконечно малых.
- •11. Непрерывность функции в точке. Свойства функций, непрерывных в точке.
- •Комментарии
- •Точки разрыва
- •Устранимые точки разрыва
- •[Править] Точки разрыва первого и второго рода
- •Свойства Локальные
- •[Править] Глобальные
- •12. Асимптоты вертикальные и горизонтальные.
- •13. Комплексные числа и действия над ними. Тригонометрическая форма комплексного числа.
- •14.Предел последовательности комплексных чисел.
- •15.Непрерывность сложных и обратных функций
- •17.Непрерывность функции на отрезке
- •18. Производная функции в точке, ее геометрический смысл. Сделай пожалуста и этот вопрос.
- •19.Свойства производной функции.
- •23. Производные высших порядков
- •24.Теорема Ролля.
- •Доказательство
- •Следствия
- •1. Теорема Ролля
- •27. Формула Тейлора.
- •28. Применение производной для исследования монотонности функции.
- •29. Минимумы и максимумы функции. Необходимые условия экстремума.
- •30. Достаточные условия экстремума.
- •31. Асимптоты вертикальные и наклонные
- •32. Выпуклость. Точки перегиба
- •33. Общая схема исследования функции.
5. Взаимное расположение прямых на плоскости.
Во-первых, две прямые на плоскости могут совпадать.
Это возможно в том случае, когда прямые имеют по крайней мере две общие точки.
Во-вторых, две прямые на плоскости могут пересекаться.
В этом случае прямые имеют одну общую точку, которую называют точкой пересечения прямых.
Отдельно стоит рассмотреть расположение прямых на плоскости, когда угол между ними равен девяноста градусам. В этом случае прямые называются перпендикулярными
В-третьих, две прямые на плоскости могут быть параллельными.
Две прямые на плоскости называются параллельными, если они не имеют общих точек.
6. Декартовы координаты в пространстве. Задача о делении отрезка в данном отношении.
Декартова прямоугольна система координат в пространстве определяется заданием линейной единицы для измерения длин и трех пересекающихся в одной точке взаимно перпендикулярных осей, занумерованных в каком-либо порядке.
Точка пересечения осей называется началом координат, а сами оси - координатными осями. Первая координатная ось называется осью абсцисс, вторая - осью ординат, третья - осью апликат.
Формулы деления отрезка в данном отношении в пространстве
Для пространственных отрезков всё будет точно так же, только добавится ещё одна координата.
Если известны две точки пространства , то координаты точки , которая делит отрезок в отношении , выражаются формулами:
7. Операции над векторами в пространстве.
для любого вектора пространства существует противоположныйвектор – , и притом единственный, такой, что +(– )=0
Произведением вектор на действительное число называется вектор, т.е. при умножении вектора на число каждая его координата умножается на это число
Суммой векторов и называется вектор, т.е. при сложении векторов одной и той же размерности их соответствующие координаты почленно складываются.
Сумма противоположных векторов даёт нулевой вектор:
При вычитании двух векторов одной и той же размерности их соответствующие координаты почленно вычитаются:
8. Векторное произведение и его свойства
Векторное произведение векторов и обозначается символом :
Основные свойства векторного произведения:
1) Векторное произведение равно нулю, если векторы и коллинеарны или какой-либо из перемножаемых векторов является нулевым.
2) При перестановке местами векторов сомножителей векторное произведение меняет знак на противоположный
Векторное произведение не обладает свойством переместительности.
9.Смешанное произведение и его свойства
Смешанным (векторно-скалярным) произведением векторов называется число, определяемое по формуле: .
Свойства смешанного произведения:
Смешанное произведение не меняется при циклической перестановке его сомножителей
При перестановке двух соседних сомножителей смешанное произведение меняет свой знак на противоположный
Необходимое и достаточное условие компланарности трех векторов : =0..Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком плюс, если эти векторы образуют правую тройку, и со знаком минус, если они образуют левую тройку
Если известны координаты векторов , то смешанное произведение находится по формуле:
10.. Плоскость в пространстве и различные формы ее представления.
Получим сначала уравнение плоскости, проходящей через точку М0(х0 ,у0 ,z0) перпендикулярно вектору n = {A,B,C},называемому нормалью к плоскости. Для любой точки плоскости М(х, у, z) вектор М0М = {x - x0 , y - y0 , z - z0) ортогонален вектору n, следовательно, их скалярное произведение равно нулю:
A(x - x0) + B(y - y0) + C(z - z0) = 0. (8.1)
Получено уравнение, которому удовлетворяет любая точка заданной плоскости – уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.
После приведения подобных можно записать уравнение (8.1) в виде:
Ax + By + Cz + D = 0, (8.2)
где D = -Ax0 - By0 - Cz0. Это линейное уравнение относительно трех переменных называют общим уравнением плоскости.
Неполные уравнения плоскости.
Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным.
Рассмотрим возможные виды неполных уравнений:
1) D = 0 – плоскость Ax + By + Cz = 0 проходит через начало координат.
2) А = 0 – n = {0,B,C}Ox, следовательно, плоскость By + Cz + D = 0 параллельна оси Ох.
3) В = 0 – плоскость Ax + Cz +D = 0 параллельна оси Оу.
4) С = 0 – плоскость Ax + By + D = 0 параллельна оси Оz.
5) А = В = 0 – плоскость Cz + D = 0 параллельна координатной плоскости Оху (так как она параллельна осям Ох и Оу).
6) А = С = 0 – плоскость Ву + D = 0 параллельна координатной плоскости Охz.
7) B = C = 0 – плоскость Ax + D = 0 параллельна координатной плоскости Оуz.
8) А = D = 0 – плоскость By + Cz = 0 проходит через ось Ох.
9) B = D = 0 – плоскость Ах + Сz = 0 проходит через ось Оу.
10) C = D = 0 - плоскость Ax + By = 0 проходит через ось Oz.
11) A = B = D = 0 – уравнение Сz = 0 задает координатную плоскость Оху.
12) A = C = D = 0 – получаем Ву = 0 – уравнение координатной плоскости Охz.
13) B = C = D = 0 – плоскость Ах = 0 является координатной плоскостью Оуz.
Если же общее уравнение плоскости является полным ( то есть ни один из коэффициентов не равен нулю), его можно привести к виду: называемому уравнением плоскости в отрезках.
