
- •I. Векторная алгебра и аналитическая геометрия.
- •1. Декартовы координаты на плоскости. Операции над векторами.
- •2. Два определения скалярного произведения.
- •3. Прямая на плоскости и различные формы ее представления.
- •4. Расстояние от точки до прямой на плоскости
- •5. Взаимное расположение прямых на плоскости.
- •6. Декартовы координаты в пространстве. Задача о делении отрезка в данном отношении.
- •7. Операции над векторами в пространстве.
- •8. Векторное произведение и его свойства
- •9.Смешанное произведение и его свойства
- •11.Расстояние от точки до плоскости.
- •16. Расстояние между прямой и плоскостью, между двумя прямыми
- •17.. Системы координат (декартовы, полярные, цилиндрические, сферические).
- •II. Линейная алгебра}
- •1.Матрица,примеры и операции над матрицей.
- •2. Алгебра матриц (сложение, умножение на число, умножение матриц, линейная комбинация, транспонирование)
- •3. Подстановки, транспозиции и их свойства.
- •4 Определитель матрицы. Примеры применения.
- •5.Свойства определителя
- •6.Свойства определителей
- •1)Обратная матрица
- •2)Теорема об определителе произведения матриц
- •9. Методы обращения матрицы.
- •10. Ранг матрицы и его свойства.
- •11. Системы линейных уравнений. Теорема Кронеккера-Капелли.
- •12. Линейная зависимость векторов. Базис n - мерного пространства
- •13. Системы линейных уравнений. Метод Крамера решения систем линейных уравнений.
- •14Системы линейных уравнений. Метод Гаусса решения систем линейных уравнений
- •15. Собственные векторы и собственные значения матрицы.
- •16.Ортонормированные системы векторов и их свойства
- •17 Линейные операторы. Матрица линейного оператора.
- •18. Матрица линейного преобразования координат.
- •20. Классификация кривых второго порядка.
- •21. Классификация поверхностей второго порядка.
- •III. Дифференциальное исчисление
- •2.Последовательности.
- •3.Предел последовательности. Теорема Больцано-Вейерштрасса.
- •4. Бесконечно малые и бесконечно большие последовательности. Их свойства. Бесконечно малые и бесконечно большие последовательности и их свойства.
- •5. Свойства пределов последовательности, связанные с арифметическими операциями.
- •6.Предел функции. Свойства предела функции в точке
- •7Основные теоремы о пределах. Арифметические операции над пределами.
- •8.Первый замечательный предел
- •9.Второй замечательный предел
- •10. Бесконечно малые функции. Свойства бесконечно малых.
- •11. Непрерывность функции в точке. Свойства функций, непрерывных в точке.
- •Комментарии
- •Точки разрыва
- •Устранимые точки разрыва
- •[Править] Точки разрыва первого и второго рода
- •Свойства Локальные
- •[Править] Глобальные
- •12. Асимптоты вертикальные и горизонтальные.
- •13. Комплексные числа и действия над ними. Тригонометрическая форма комплексного числа.
- •14.Предел последовательности комплексных чисел.
- •15.Непрерывность сложных и обратных функций
- •17.Непрерывность функции на отрезке
- •18. Производная функции в точке, ее геометрический смысл. Сделай пожалуста и этот вопрос.
- •19.Свойства производной функции.
- •23. Производные высших порядков
- •24.Теорема Ролля.
- •Доказательство
- •Следствия
- •1. Теорема Ролля
- •27. Формула Тейлора.
- •28. Применение производной для исследования монотонности функции.
- •29. Минимумы и максимумы функции. Необходимые условия экстремума.
- •30. Достаточные условия экстремума.
- •31. Асимптоты вертикальные и наклонные
- •32. Выпуклость. Точки перегиба
- •33. Общая схема исследования функции.
7Основные теоремы о пределах. Арифметические операции над пределами.
Теорема
1.
Если в точке существуют
конечные пределы функций
и
,
то в этой точке существует и предел
суммы
,
причем
.
Теорема
2. Если
в точке существуют
пределы функций
и
,
то существует и предел произведения
,
причем
.
Следствие 1. Постоянный множитель можно выносить за знак предела.
Действительно, .
Следствие
2..
Теорема
3. Если
в точке существуют
пределы функций
и
и
при этом
,
то существует и предел частного
,
причем
.
Теорема
4. Если
в окрестности точки выполняется
условие
и
при этом функции
и
стремятся
к одному и тому же пределу
,
то и функция
также
стремится к тому же пределу, т.е.
.
8.Первый замечательный предел
Доказательство
Рассмотрим односторонние
пределы и
и
докажем, что они равны 1.
Пусть .
Отложим этот угол на единичной окружности
(
).
Точка K —
точка пересечения луча с окружностью,
а точка L —
с касательной к единичной окружности
в точке .
ТочкаH —
проекция точки K на
ось OX.
Очевидно, что:
(1)
(где —
площадь сектора
)
(из :
)
Подставляя в (1), получим:
Так
как при :
Умножаем
на :
Перейдём к пределу:
Найдём левый односторонний предел:
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Следствия
Доказательства
9.Второй замечательный предел
или
Доказательство второго замечательного предела:
Доказательство для натуральных значений
Докажем
вначале теорему для случая
последовательности
По формуле бинома Ньютона:
Полагая ,
получим:
Из
данного равенства (1) следует, что с
увеличением n число положительных
слагаемых в правой части увеличивается.
Кроме того, при увеличении n число убывает,
поэтому величины
возрастают.
Поэтому последовательность
— возрастающая,
при этом
(2).
Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство
Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:
.
Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:
.
Поэтому (3).
Итак,
последовательность ограничена сверху,
при этом выполняются
неравенства (2) и (3):
.
Следовательно,
на основании теоремы Вейерштрасса
(критерий сходимости последовательности)
последовательность монотонно
возрастает и ограниченна, значит имеет
предел, обозначаемый буквойe.
Т.е.
Зная,
что второй замечательный предел верен
для натуральных значений x, докажем
второй замечательный предел для
вещественных x, то есть докажем, что .
Рассмотрим два случая:
1.
Пусть .
Каждое значение x заключено между двумя
положительными целыми числами:
,
где
—
это целая часть x.
Отсюда
следует: ,
поэтому
.
Если ,
то
.
Поэтому, согласно пределу
,
имеем:
.
По
признаку (о пределе промежуточной
функции) существования пределов .
2.
Пусть .
Сделаем подстановку
,
тогда
.
Из
двух этих случаев вытекает, что для
вещественного x.
Следствия
для
,
Доказательства следствий
10. Бесконечно малые функции. Свойства бесконечно малых.
Бесконечно малые функции Функция f (x) называется бесконечно малой функцией в точке х = х0, если Аналогично определяются бесконечно малые функции при x → ∞, x → + ∞, x → – ∞, x → x0 – 0, x → x0 + 0. Можно дать равносильное определение бесконечно малой функции «на языке ε – δ: функция f (x) называется бесконечно малой в точке х = х0, если для любого как угодно малого ε > 0 существует δ = δ(ε) > 0, такое, что для всех х, удовлетворяющих неравенству 0 < | х – x0 | < δ, выполняется неравенство | f (x) | < ε. Или в символьном виде ( ε > 0) ( δ = δ(ε) > 0)( 0 < |х – х0| < δ ) : | f (x) | < ε. Имеет место следующая теорема: функция f (x) в окрестности точки х0 отличается от своего предельного значения A на бесконечно малую функцию. Доказательство. Рассмотрим разность f (x) – А = α(х). Так как то функция α(х) является бесконечно малой при x → х0. Свойства бесконечно малых функций Опираясь на правила вычисления пределов, можно сформулировать свойства бесконечно малых: алгебраическая сумма и произведение конечного числа бесконечно малых функций при x → x0, а также произведение бесконечно малой функции на ограниченную функцию являются бесконечно малыми функциями при x → x0: 1. Все сказанное о бесконечно малых функциях при x → x0 справедливо и для бесконечно малых функций при x → ∞, x → + ∞, x → – ∞, x → x0 – 0, x → x0 + 0.