
- •I. Векторная алгебра и аналитическая геометрия.
- •1. Декартовы координаты на плоскости. Операции над векторами.
- •2. Два определения скалярного произведения.
- •3. Прямая на плоскости и различные формы ее представления.
- •4. Расстояние от точки до прямой на плоскости
- •5. Взаимное расположение прямых на плоскости.
- •6. Декартовы координаты в пространстве. Задача о делении отрезка в данном отношении.
- •7. Операции над векторами в пространстве.
- •8. Векторное произведение и его свойства
- •9.Смешанное произведение и его свойства
- •11.Расстояние от точки до плоскости.
- •16. Расстояние между прямой и плоскостью, между двумя прямыми
- •17.. Системы координат (декартовы, полярные, цилиндрические, сферические).
- •II. Линейная алгебра}
- •1.Матрица,примеры и операции над матрицей.
- •2. Алгебра матриц (сложение, умножение на число, умножение матриц, линейная комбинация, транспонирование)
- •3. Подстановки, транспозиции и их свойства.
- •4 Определитель матрицы. Примеры применения.
- •5.Свойства определителя
- •6.Свойства определителей
- •1)Обратная матрица
- •2)Теорема об определителе произведения матриц
- •9. Методы обращения матрицы.
- •10. Ранг матрицы и его свойства.
- •11. Системы линейных уравнений. Теорема Кронеккера-Капелли.
- •12. Линейная зависимость векторов. Базис n - мерного пространства
- •13. Системы линейных уравнений. Метод Крамера решения систем линейных уравнений.
- •14Системы линейных уравнений. Метод Гаусса решения систем линейных уравнений
- •15. Собственные векторы и собственные значения матрицы.
- •16.Ортонормированные системы векторов и их свойства
- •17 Линейные операторы. Матрица линейного оператора.
- •18. Матрица линейного преобразования координат.
- •20. Классификация кривых второго порядка.
- •21. Классификация поверхностей второго порядка.
- •III. Дифференциальное исчисление
- •2.Последовательности.
- •3.Предел последовательности. Теорема Больцано-Вейерштрасса.
- •4. Бесконечно малые и бесконечно большие последовательности. Их свойства. Бесконечно малые и бесконечно большие последовательности и их свойства.
- •5. Свойства пределов последовательности, связанные с арифметическими операциями.
- •6.Предел функции. Свойства предела функции в точке
- •7Основные теоремы о пределах. Арифметические операции над пределами.
- •8.Первый замечательный предел
- •9.Второй замечательный предел
- •10. Бесконечно малые функции. Свойства бесконечно малых.
- •11. Непрерывность функции в точке. Свойства функций, непрерывных в точке.
- •Комментарии
- •Точки разрыва
- •Устранимые точки разрыва
- •[Править] Точки разрыва первого и второго рода
- •Свойства Локальные
- •[Править] Глобальные
- •12. Асимптоты вертикальные и горизонтальные.
- •13. Комплексные числа и действия над ними. Тригонометрическая форма комплексного числа.
- •14.Предел последовательности комплексных чисел.
- •15.Непрерывность сложных и обратных функций
- •17.Непрерывность функции на отрезке
- •18. Производная функции в точке, ее геометрический смысл. Сделай пожалуста и этот вопрос.
- •19.Свойства производной функции.
- •23. Производные высших порядков
- •24.Теорема Ролля.
- •Доказательство
- •Следствия
- •1. Теорема Ролля
- •27. Формула Тейлора.
- •28. Применение производной для исследования монотонности функции.
- •29. Минимумы и максимумы функции. Необходимые условия экстремума.
- •30. Достаточные условия экстремума.
- •31. Асимптоты вертикальные и наклонные
- •32. Выпуклость. Точки перегиба
- •33. Общая схема исследования функции.
15. Собственные векторы и собственные значения матрицы.
Собственным
векторомлинейного
преобразованияназывается
такой ненулевойвектор
,
что для некоторого
Собственным
значением линейного
преобразования называется
такое число
,
для которого существует собственный
вектор, то есть уравнение
имеет
ненулевое решение
.
Упрощённо
говоря, собственный
вектор —
любой ненулевой вектор x, который
отображается оператором в коллинеарный ,
а соответствующий скаляр
называетсясобственным
значением оператора.
Собственные
значения матрицы (i, k =
1, 2,..., n)
называют Собственные
значениясоответствующего
ей линейного преобразования п-мерного
комплексного пространства. Их можно
определить также как корни определителя
матрицы А
— lЕ (где Е
— единичная
матрица), т. е. корни уравнения
,
(*)
называемого характеристическим
уравнением матрицы
16.Ортонормированные системы векторов и их свойства
Если длина вектора равна единице, он называется нормированным вектором:(x,x)= 1,|x| = 1.
Если все векторы системы векторов нормированы, то система векторов называется нормированной системой.
Если векторы системы векторов e1,e2,..., enпопарно ортогональны и нормированы, то система векторов называетсяортонормированной системой:(ei, ej) = 0, если i ≠ j ,(ei, ei) = 1.
Если e1,e2,..., en — ортонормированная система иx=x1e1+x2e2+ ... +xnen — разложение вектораxпо этой системе, то xi =(x, ei).
17 Линейные операторы. Матрица линейного оператора.
Пусть заданы линейные пространства X и Y. Правило, по которому каждому элементу x e X ставится в соответствие единственный элемент y e Y , называется оператором, действующим в линейных пространствах X , Y. Результат действия оператора A на элемент x обозначают y = A x или y = A(x). Если элементы x и y связаны соотношением y = A x, то y называют образом элемента x; элемент x прообразом элемента y.
Множество элементов линейного пространства X, для которых определено действие оператора A, называют областью определения оператора и обозначают D(A).
Множество элементов линейного пространства Y, которые являются образами элементов из области определения оператора A, называют образом оператора и обозначают Im(A). Если y = A x , то x e D(A), y e Im(A) .
Оператор A, действующий в линейных пространствах X , Y называется линейным оператором, если
A(u+v)=A(u)+A(v) и A(au)=aA(u) и для любых u,v e X и для любого числа a.
Если пространства X и Y совпадают, то говорят, что оператор действует в пространстве X. 2) Рассмотрим линейный оператор A, действующий в конечномерном линейном пространстве X, dim(x)=n и пусть e1, e2, ..., en - базис в X. Обозначим через A e1 = (a11,...,an1), ... , A en = (a1n,...,ann) образы базисных векторов e1, e2, ..., en .
Матрица столбцами которой являются координаты образов базисных векторов, называется матрицей линейного оператора в заданном базисе.
Доказано, что каждому линейному оператору, действующему в n-мерном линейном пространстве, отвечает единственная квадратная матрица порядка n; и обратно каждая квадратная матрица порядка n задает единственный линейный оператор, действующий в этом пространстве. Замечание 1. Если оператор А нулевой, то все элементы матрицы А этого оператора равны нулю в любом базисе, т.е. А — нулевая матрица.
Замечание 2. Если оператор А единичный, т. е. А = I, то матрица этого оператора будет единичной в любом базисе. Иными словами, в этом случае А = Е, где Е — единичная матрица. В дальнейшем единичную матрицу мы будем обозначать также символом I.