
- •I. Векторная алгебра и аналитическая геометрия.
- •1. Декартовы координаты на плоскости. Операции над векторами.
- •2. Два определения скалярного произведения.
- •3. Прямая на плоскости и различные формы ее представления.
- •4. Расстояние от точки до прямой на плоскости
- •5. Взаимное расположение прямых на плоскости.
- •6. Декартовы координаты в пространстве. Задача о делении отрезка в данном отношении.
- •7. Операции над векторами в пространстве.
- •8. Векторное произведение и его свойства
- •9.Смешанное произведение и его свойства
- •11.Расстояние от точки до плоскости.
- •16. Расстояние между прямой и плоскостью, между двумя прямыми
- •17.. Системы координат (декартовы, полярные, цилиндрические, сферические).
- •II. Линейная алгебра}
- •1.Матрица,примеры и операции над матрицей.
- •2. Алгебра матриц (сложение, умножение на число, умножение матриц, линейная комбинация, транспонирование)
- •3. Подстановки, транспозиции и их свойства.
- •4 Определитель матрицы. Примеры применения.
- •5.Свойства определителя
- •6.Свойства определителей
- •1)Обратная матрица
- •2)Теорема об определителе произведения матриц
- •9. Методы обращения матрицы.
- •10. Ранг матрицы и его свойства.
- •11. Системы линейных уравнений. Теорема Кронеккера-Капелли.
- •12. Линейная зависимость векторов. Базис n - мерного пространства
- •13. Системы линейных уравнений. Метод Крамера решения систем линейных уравнений.
- •14Системы линейных уравнений. Метод Гаусса решения систем линейных уравнений
- •15. Собственные векторы и собственные значения матрицы.
- •16.Ортонормированные системы векторов и их свойства
- •17 Линейные операторы. Матрица линейного оператора.
- •18. Матрица линейного преобразования координат.
- •20. Классификация кривых второго порядка.
- •21. Классификация поверхностей второго порядка.
- •III. Дифференциальное исчисление
- •2.Последовательности.
- •3.Предел последовательности. Теорема Больцано-Вейерштрасса.
- •4. Бесконечно малые и бесконечно большие последовательности. Их свойства. Бесконечно малые и бесконечно большие последовательности и их свойства.
- •5. Свойства пределов последовательности, связанные с арифметическими операциями.
- •6.Предел функции. Свойства предела функции в точке
- •7Основные теоремы о пределах. Арифметические операции над пределами.
- •8.Первый замечательный предел
- •9.Второй замечательный предел
- •10. Бесконечно малые функции. Свойства бесконечно малых.
- •11. Непрерывность функции в точке. Свойства функций, непрерывных в точке.
- •Комментарии
- •Точки разрыва
- •Устранимые точки разрыва
- •[Править] Точки разрыва первого и второго рода
- •Свойства Локальные
- •[Править] Глобальные
- •12. Асимптоты вертикальные и горизонтальные.
- •13. Комплексные числа и действия над ними. Тригонометрическая форма комплексного числа.
- •14.Предел последовательности комплексных чисел.
- •15.Непрерывность сложных и обратных функций
- •17.Непрерывность функции на отрезке
- •18. Производная функции в точке, ее геометрический смысл. Сделай пожалуста и этот вопрос.
- •19.Свойства производной функции.
- •23. Производные высших порядков
- •24.Теорема Ролля.
- •Доказательство
- •Следствия
- •1. Теорема Ролля
- •27. Формула Тейлора.
- •28. Применение производной для исследования монотонности функции.
- •29. Минимумы и максимумы функции. Необходимые условия экстремума.
- •30. Достаточные условия экстремума.
- •31. Асимптоты вертикальные и наклонные
- •32. Выпуклость. Точки перегиба
- •33. Общая схема исследования функции.
12. Линейная зависимость векторов. Базис n - мерного пространства
Линейная зависимость векторов Определение. Векторы называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно ai , т.е. . Если же только при ai = 0 выполняется , то векторы называются линейно независимыми. Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы. Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима. Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов. Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны. Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны. Свойство 6. Любые 4 вектора линейно зависимы.
Ба́зис — набор n векторов в n-мерном линейном пространстве, таких, что любой вектор пространства может быть представлен в виде некоторой их линейной комбинации, при этом ни один из базисных векторов не представим в виде линейной комбинации остальных. В более точной формулировке, базис в векторном пространстве — это упорядоченная линейно независимая система векторов такая, что любой вектор этого пространства разложим по ней. Некоторые свойства базиса : Единственная тривиальная линейная комбинация векторов базиса возможна только при тривиальном наборе коэффициентов.Для любого вектора существует единственное представление в виде линейной комбинации соответствующего базиса.Количество векторов базиса не зависит от выбора базисных векторов и называется размерностью пространства (обозначается dimV). Представление вектора в виде линейной комбинации базисных векторов называется разложением вектора по данному базису.
13. Системы линейных уравнений. Метод Крамера решения систем линейных уравнений.
Системой m линейных уравнений с n неизвестными называется система вида
где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.
Коэффициенты
при неизвестных будем записывать в виде
матрицы ,
которую назовёмматрицей
системы.
Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.
Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.
Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:
Система может иметь единственное решение.
Система может иметь бесконечное множество решений. Например,
. Решением этой системы является любая пара чисел, отличающихся знаком.
И третий случай, когда система вообще не имеет решения. Например,
, если бы решение существовало, тоx1 + x2 равнялось бы одновременно нулю и единице.
Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.
МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ
Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:
Рассмотрим
матрицу системы и
матрицы столбцы неизвестных и свободных
членов
Найдем произведение
т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде
или
короче A∙X=B.
Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.
Пусть
определитель матрицы отличен от нуля
|A|
≠ 0. Тогда матричное уравнение решается
следующим образом. Умножим обе части
уравнения слева на матрицу A-1,
обратную матрице A: .
ПосколькуA-1A
= E и E∙X
= X,
то получаем решение матричного уравнения
в виде X
= A-1B.
Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1B.
Примеры. Решить системы уравнений.
Найдем матрицу обратную матрице A.
,
Таким образом, x = 3, y = – 1.
Итак, х1=4,х2=3,х3=5.
Решите матричное уравнение: XA+B=C, где
Выразим искомую матрицу X из заданного уравнения.
Найдем матрицу А-1.
Проверка:
Решите матричное уравнение AX+B=C, где
Из
уравнения получаем .
Следовательно,
ПРАВИЛО КРАМЕРА
Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:
Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,
называется определителем системы.
Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов
Тогда можно доказать следующий результат.
Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём
Доказательство.
Итак, рассмотрим систему 3-х уравнений
с тремя неизвестными. Умножим 1-ое
уравнение системы на алгебраическое
дополнение A11 элемента a11,
2-ое уравнение – на A21 и
3-е – на A31:
Сложим эти уравнения:
Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца
.
Далее рассмотрим коэффициенты при x2:
Аналогично
можно показать, что и .
Наконец
несложно заметить, что
Таким
образом, получаем равенство: .
Следовательно, .
Аналогично
выводятся равенства и
,
откуда и следует утверждение теоремы.
Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.
Примеры. Решить систему уравнений
Итак, х=1, у=2, z=3.
Решите систему уравнений при различных значениях параметра p:
Система имеет единственное решение, если Δ ≠ 0.
.
Поэтому
.
При
При p = 30 получаем систему уравнений
которая не имеет решений.
При p = –30 система принимает вид
и, следовательно, имеет бесконечное множество решенийx=y, y≠R.