
- •1. Строение металлов. Кристаллизация.
- •1.1. Атомно-кристаллическое строение металлов
- •1.2. Полиморфизм металлов.
- •1.3. Дефекты кристаллического строения металлов
- •1.4. Кристаллизация металлов
- •1.4.1. Термодинамические условия кристаллизации
- •1.4.2. Кинетика процесса кристаллизации. Критический зародыш.
- •1.4.3. Структура металла
- •2. Механические свойства металлов
- •2.1.1. Характеристики прочности
- •2 .1.2. Характеристики пластичности
- •2.2. Методы определения твердости металлов
- •2.3. Характеристики механических свойств, определяемые при динамических нагрузках
- •2.4. Характеристики механических свойств, определяемые при циклических нагрузках
- •3.Пластическая деформация и рекристаллизация
- •3.1. Изменение структуры и свойств металлов при пластической деформации
- •3.2 Влияние нагрева на структуру и свойства деформированного металла
- •3.2.1. Возврат
- •3.2.2. Рекристаллизация
- •4. Теория металлических сплавов
- •4.1. Компоненты и фазы в металлических сплавах
- •4.1.1. Твёрдые растворы
- •4.1.2. Химические соединения
- •4.2. Диаграммы фазового равновесия (диаграммы состояния)
- •4.2.1. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твёрдом состоянии
- •4.2.2 Диаграмма состояния сплавов с ограниченной растворимостью и эвтектикой
- •4.3. Связь диаграмм состояния со свойствами сплавов
- •5. Железо и сплавы на его основе
- •5.1. Компоненты и фазы в системе Fe-c
- •5.2. Диаграмма состояния железо-цементит
- •5.3. Структуры железоуглеродистых сплавов в равновесном состоянии
- •5.4. Серые чугуны
- •5.5. Влияние углерода и постоянных примесей на свойства стали
- •5.6. Легирующие элементы в сталях
- •5.6.1. Фазы в легированных сталях
- •5.6.2. Влияние легирующих элементов на свойства стали
- •5.6.3. Влияние легирующих элементов на полиморфизм железа
- •5.6.4. Структурные классы легированных сталей в равновесном состоянии
- •6. Теория термической обработки стали
- •6.1.Превращение перлита в аустенит при нагреве
- •6.2. Превращения переохлаждённого аустенита
- •6.2.1. Диаграмма изотермического распада переохлаждённого аустенита
- •6.2.2. Перлитное превращение
- •6.2.3. Мартенситное превращение
- •6.2.4. Промежуточное (бейнитное) превращение
- •6.2.5. Превращения аустенита при непрерывном охлаждении
- •6.2.6. Влияние легирующих элементов на распад аустенита
- •6.3. Превращения мартенсита при нагреве (при отпуске)
- •7. Практика термической обработки стали
- •7.1 Отжиг
- •7.2. Нормализация
- •7.2.1. Классификация сталей по структуре в нормализованном состоянии
- •7.3. Закалка
- •7.4. Отпуск стали
- •7.4.1. Отпускная хрупкость
- •7.5. Закаливаемость и прокаливаемость стали
- •7.6. Способы поверхностного упрочнения сталей
- •7.6.1. Поверхностная закалка стали с индукционным нагревом (закалка твч)
- •7.6.2. Цементация
- •7.6.3. Азотирование
- •8. Стали
- •8.1. Классификация сталей
- •8.2. Маркировка сталей
- •8.3. Конструкционные стали общего назначения
- •8.3.1.Цементуемые стали
- •8.3.2.Улучшаемые стали
- •8.3.3.Рессорно-пружинные стали
- •8.4. Конструкционные стали специального назначения
- •8.4.1. Износостойкие стали
- •8.4.2. Стали, устойчивые против коррозии
- •8.4.3. Жаростойкие стали
- •8.4.4. Жаропрочные стали
- •8.5. Инструментальные стали
- •8.5.1. Стали для режущих инструментов
- •8.5.2. Стали для измерительных инструментов
- •8.5.3. Стали для штампов
- •9. Сплавы цветных металлов
- •9.1. Алюминий и его сплавы
- •9.1.3. Литейные алюминиевые сплавы
- •9.1.4. Порошковые алюминиевые сплавы
- •9.2. Медь и ее сплавы
- •9.2.1. Латуни
- •9.2.2. Бронзы
- •9.2.2.1. Оловянные бронзы
- •9.2.2.2 Алюминиевые бронзы
- •9.2.2.3. Кремнистые бронзы
- •9.2.2.4. Свинцовые бронзы
- •9.3. Подшипниковые сплавы
- •9.4. Титан и его сплавы
3.2.1. Возврат
При нагреве до 0,2…0,3 ТПЛ без заметного изменения структуры и свойств снижаются внутренние напряжения, концентрация точечных дефектов, плотность дислокаций. Возврат сопровождается образованием субзерен – полигонов с относительно малой плотностью дислокаций, разделённых дислокационными границами.
3.2.2. Рекристаллизация
Рекристаллизация – процесс зарождения и формирования новой равновесной структуры. Рекристаллизация возможна, если пластическая деформация больше критической (εкр=3..15%).
Первичная рекристаллизация. При температуре начала рекристаллизации ТН.Р.=αТпл [К], где α=0,3…0,4 - для чистых металлов, α= 0,5…0,7 - для сплавов, на границах деформированных зерен появляются зародыши и рост новых равноосных зерен (рис.14). При нагреве число зародышей интенсивно растет и образуется новая мелкозернистая структура.
Рис.14. Изменение структуры и свойств деформационно-упрочненного металла при нагреве
Собирательная рекристаллизация – укрупнение рекристаллизованных зерен при нагреве с переходом металла в более устойчивое состояние с меньшей свободной энергией. В итоге формируется термодинамически устойчивая равновесная структура. Размер зерна после рекристаллизации зависит от температуры нагрева, времени выдержки и степени пластической деформации ε. Чем выше температура и время выдержки, тем крупнее зерно (рис.14). Чем больше ε, тем мельче зерно.
а) б) в)
Рис. 15. Влияние температуры (а), длительности отжига (б) и степени деформации (в) на размер рекристаллизованного зерна
Холодная и горячая пластическая деформация
Холодная пластическая деформация проводится при температуре ниже температуры начала рекристаллизации ТДЕФ<ТН.Р., она сопровождается наклепом. Горячая пластическая деформация проводится при температуре выше температуры начала рекристаллизации ТДЕФ>ТН.Р. При этом упрочнение чередуется с рекристаллизационными процессами разупрочнения, и наклёп отсутствует.
4. Теория металлических сплавов
Чистые металлы находят ограниченное применение, так как обладают невысокой прочностью; обычно применяют сплавы. Их получают сплавлением металлов, либо металла с неметаллом, а также методами порошковой технологии.
4.1. Компоненты и фазы в металлических сплавах
Компоненты – элементы, образующие сплав.
Компоненты сплава при взаимодействии образуют фазы. Фаза – это однородная часть сплава, по составу, структуре и свойствам, отделенная от других частей границей раздела. При переходе через границу резко меняются строение и свойства. Сочетание и взаимное расположение фаз, формируемых при охлаждении сплава, образуют его структуру.
Основные фазы в сплавах:
жидкая фаза. Большинство компонентов металлических сплавов в жидком состоянии полностью растворяются друг в друге, образуя жидкий раствор или расплав.
твёрдые растворы,
химические соединения.
Кроме того, фазами могут быть чистые химические элементы, например, углерод (графит) в серых чугунах.
4.1.1. Твёрдые растворы
Твёрдый раствор – фаза, в которой сохраняется кристаллическая решетка основного компонента (растворителя). По характеру расположения растворенных атомов в кристаллической решетке растворителя различают:
твердые растворы замещения;
твердые растворы внедрения.
В твёрдых растворах замещения атомы растворенного компонента (В) располагаются в узлах кристаллической решетки, замещая атомы основного компонента (А). Такие растворы образуются между металлами. Они могут быть неограниченной и ограниченной растворимости.
Условия образования неограниченных твердых растворов:
одинаковый тип кристаллической решётки компонентов;
различие в атомных размерах компонентов не более 8…15%;
расположение элементов в одной и той же или соседних группах таблицы Менделеева.
Твердые растворы внедрения образуют металлы с неметаллами малого атомного радиуса – C,N,B,H. Твёрдые растворы внедрения всегда имеют ограниченную растворимость.
Твёрдые растворы обозначают α, β, γ, например, α=А(В) - твердый раствор компонента В в А.