Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение. Для ГП,АП, Крат. курс.doc
Скачиваний:
154
Добавлен:
15.05.2015
Размер:
18.94 Mб
Скачать

9.2.2.1. Оловянные бронзы

В системе Cu–Sn образуются следующие фазы:

α-твердый раствор олова в меди;

химические соединения Cu5Sn (β-фаза), Cu3Sn (ε-фаза), Cu31Sn8 (δ-фаза).

Практическое значение имеют сплавы, содержащие до 10…12%Sn. По содержанию олова бронзы делят на:

деформируемые, с содержанием Sn до 6%;

литейные, с содержанием Sn более 6%.

Деформируемые бронзы (БрО5) имеют однофазную структуру α-твердого раствора. Упрочняются холодной пластической деформацией, применяются в виде прутков, лент и проволоки. В отожженном состоянии они обладают высокими упругими свойствами и сопротивлением усталости, поэтому их используют для изготовления пружин, в электротехнике, химическом машиностроении и др.

Литейные бронзы (БрО10), имеют двухфазную структуру α–твердого раствора с включениями Cu31Sn8, что обеспечивает им высокие антифрикционные свойства. Применяются литейные бронзы для подшипников скольжения ответственного назначения.

Оловянные бронзы дополнительно легируют элементами: Zn, Pb, Ni, P.

Для экономии более дорогостоящего олова в бронзы добавляют 2…15%Zn. Цинк улучшает жидкотекучесть, плотность отливок, повышает механические свойства, способность к сварке и пайке (БрОЦ4-3).

Свинец повышает антифрикционные свойства и улучшает обрабатываемость резанием (БрОЦС4-4-2,5).

Фосфор повышает жидкотекучесть, упругие и антифрикционные свойства (БрОФ6,5-0,4).

Никель способствует измельчению структуры и повышению механических и коррозионных свойств (БрОЦСН3-7-5-1).

9.2.2.2 Алюминиевые бронзы

Алюминиевые бронзы - (БрА5, БрАЖ9-4) применяют для изготовления высокоответственных деталей типа шестерен, втулок, фланцев.

9.2.2.3. Кремнистые бронзы

(БрК4, БрКМц3-1) превосходят оловянные бронзы по коррозионной стойкости и механическим свойствам, имеют высокие упругие свойства.

9.2.2.4. Свинцовые бронзы

(БрС30) используют как антифрикционный материал для ответственных высоконагруженных подшипников.

9.2.2.5. Бериллиевую бронзу

(БрБ2) применяют для изготовления упругих элементов точных приборов (пружин, мембран). Эти сплавы упрочняются термообработкой, состоящей из закалки и старения. Упрочнение достигается за счет образования -раствора с частицами интерметаллидной-фазы (CuBe).

9.3. Подшипниковые сплавы

Распространенные подшипниковые сплавы - баббиты – сплавы на основе олова или свинца. Они используются для заливки вкладышей подшипников скольжения, их свойства:

низкий коэффициент трения между валом и подшипником;

высокая износостойкость деталей трущейся пары;

способность деформироваться под влиянием местных напряжений;

способность удерживать смазку на поверхности;

хорошая теплопроводность и устойчивость против коррозии.

9.3.1. Оловянные баббиты

– это сплавы системы олово-сурьма (Sn–Sb), содержащие, как правило, добавки меди. Например, сплав Б83 содержит 83%Sn, 11%Sb, 6%Сu.

В тройной системе Sn–Sb-Cu образуются следующие фазы:

 - твердый раствор сурьмы и меди в олове;

′ - твердый раствор на основе химического соединения SnSb;

 - химическое соединение Cu3Sn.

Структура баббита (рис. 52) представляет собой мягкую основу -твердого раствора с твердыми включениями′-фазы и химического соединения Cu3Sn. Такая структура обеспечивает высокие антифрикционные свойства, так как в процессе изнашивания мягкая основа истирается, образуются микроскопические каналы, по которым циркулирует смазка, и контакт трущихся поверхностей происходит по вершинам твердых включений.

Сплавы Sn–Sb склонны к ликвации по плотности. Кристаллы химического соединения SnSb, обладая низкой плотностью, всплывают в верхнюю часть слитка, вызывая его неравномерное строение. Для устранения ликвации в состав баббита добавляют медь, образующую тугоплавкое соединение Cu3Sn, дендритные кристаллы которого кристаллизуется первыми, сдерживая ликвацию кристаллов SnSb.

Рис. 52. Микроструктура баббита Б83