
- •1. Строение металлов. Кристаллизация.
- •1.1. Атомно-кристаллическое строение металлов
- •1.2. Полиморфизм металлов.
- •1.3. Дефекты кристаллического строения металлов
- •1.4. Кристаллизация металлов
- •1.4.1. Термодинамические условия кристаллизации
- •1.4.2. Кинетика процесса кристаллизации. Критический зародыш.
- •1.4.3. Структура металла
- •2. Механические свойства металлов
- •2.1.1. Характеристики прочности
- •2 .1.2. Характеристики пластичности
- •2.2. Методы определения твердости металлов
- •2.3. Характеристики механических свойств, определяемые при динамических нагрузках
- •2.4. Характеристики механических свойств, определяемые при циклических нагрузках
- •3.Пластическая деформация и рекристаллизация
- •3.1. Изменение структуры и свойств металлов при пластической деформации
- •3.2 Влияние нагрева на структуру и свойства деформированного металла
- •3.2.1. Возврат
- •3.2.2. Рекристаллизация
- •4. Теория металлических сплавов
- •4.1. Компоненты и фазы в металлических сплавах
- •4.1.1. Твёрдые растворы
- •4.1.2. Химические соединения
- •4.2. Диаграммы фазового равновесия (диаграммы состояния)
- •4.2.1. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твёрдом состоянии
- •4.2.2 Диаграмма состояния сплавов с ограниченной растворимостью и эвтектикой
- •4.3. Связь диаграмм состояния со свойствами сплавов
- •5. Железо и сплавы на его основе
- •5.1. Компоненты и фазы в системе Fe-c
- •5.2. Диаграмма состояния железо-цементит
- •5.3. Структуры железоуглеродистых сплавов в равновесном состоянии
- •5.4. Серые чугуны
- •5.5. Влияние углерода и постоянных примесей на свойства стали
- •5.6. Легирующие элементы в сталях
- •5.6.1. Фазы в легированных сталях
- •5.6.2. Влияние легирующих элементов на свойства стали
- •5.6.3. Влияние легирующих элементов на полиморфизм железа
- •5.6.4. Структурные классы легированных сталей в равновесном состоянии
- •6. Теория термической обработки стали
- •6.1.Превращение перлита в аустенит при нагреве
- •6.2. Превращения переохлаждённого аустенита
- •6.2.1. Диаграмма изотермического распада переохлаждённого аустенита
- •6.2.2. Перлитное превращение
- •6.2.3. Мартенситное превращение
- •6.2.4. Промежуточное (бейнитное) превращение
- •6.2.5. Превращения аустенита при непрерывном охлаждении
- •6.2.6. Влияние легирующих элементов на распад аустенита
- •6.3. Превращения мартенсита при нагреве (при отпуске)
- •7. Практика термической обработки стали
- •7.1 Отжиг
- •7.2. Нормализация
- •7.2.1. Классификация сталей по структуре в нормализованном состоянии
- •7.3. Закалка
- •7.4. Отпуск стали
- •7.4.1. Отпускная хрупкость
- •7.5. Закаливаемость и прокаливаемость стали
- •7.6. Способы поверхностного упрочнения сталей
- •7.6.1. Поверхностная закалка стали с индукционным нагревом (закалка твч)
- •7.6.2. Цементация
- •7.6.3. Азотирование
- •8. Стали
- •8.1. Классификация сталей
- •8.2. Маркировка сталей
- •8.3. Конструкционные стали общего назначения
- •8.3.1.Цементуемые стали
- •8.3.2.Улучшаемые стали
- •8.3.3.Рессорно-пружинные стали
- •8.4. Конструкционные стали специального назначения
- •8.4.1. Износостойкие стали
- •8.4.2. Стали, устойчивые против коррозии
- •8.4.3. Жаростойкие стали
- •8.4.4. Жаропрочные стали
- •8.5. Инструментальные стали
- •8.5.1. Стали для режущих инструментов
- •8.5.2. Стали для измерительных инструментов
- •8.5.3. Стали для штампов
- •9. Сплавы цветных металлов
- •9.1. Алюминий и его сплавы
- •9.1.3. Литейные алюминиевые сплавы
- •9.1.4. Порошковые алюминиевые сплавы
- •9.2. Медь и ее сплавы
- •9.2.1. Латуни
- •9.2.2. Бронзы
- •9.2.2.1. Оловянные бронзы
- •9.2.2.2 Алюминиевые бронзы
- •9.2.2.3. Кремнистые бронзы
- •9.2.2.4. Свинцовые бронзы
- •9.3. Подшипниковые сплавы
- •9.4. Титан и его сплавы
2.4. Характеристики механических свойств, определяемые при циклических нагрузках
Многие детали машин (валы, шестерни и др.) работают в условиях знакопеременных (циклических) нагрузок. Разрушение детали под действием циклических нагрузок называют усталостью, а свойство противостоять усталости – выносливостью, которая характеризуется пределом выносливости σ-1.
Усталостные испытания проводят на машинах, создающих в образцах циклические изменения напряжения. Проводят серию испытаний при последовательно уменьшающихся нагрузках, начиная с σ1=0,6σВ, при этом определяют число циклов N до разрушения. По результатам испытаний строят кривую усталости σ=f(N) (рис.11) и определяют предел выносливости, σ-1 – максимальное напряжение, которое выдерживает образец без разрушения бесконечное или базовое число циклов. Для стали за базу принимают 107 циклов. Предел выносливости зависит от состояния поверхности и размера зерна: при полированной поверхности значение σ-1 максимально, при шлифованной – меньше на 10…15%. Чем мельче зерно, тем выше σ-1. Для повышения σ-1 применяют методы поверхностного упрочнения.
Рис. 11. Построение кривой усталости
3.Пластическая деформация и рекристаллизация
3.1. Изменение структуры и свойств металлов при пластической деформации
Механизмы пластической деформации:
скольжение;
двойникование;
межзеренное перемещение (зернограничное скольжение).
Скольжение состоит в сдвиге одной части кристалла относительно другой путем последовательного перемещения дислокаций. В металлах с плотноупакованной решеткой (К12, Г12) кроме скольжения, возможно двойникование – зеркально симметричное смещение одной части кристалла относительно другой.
При пластической деформации поликристаллического металла, кроме того, происходит зернограничное скольжение, которое активизирует диффузию дислокаций, вакансий и межузельных атомов. Зерна удлиняются и дробятся, образуется волокнистая структура (рис.12).
При большой пластической деформации под влиянием внешних сил формируется текстура деформации – структура с преимущественной кристаллографической ориентировкой зёрен.
а) б)
Рис. 12. Изменение формы зерна в металле под действием пластической деформации: до деформации (а) и после деформации (б)
В таком состоянии металл анизотропен, т.е. имеет различные свойства в разных направлениях.
Величину деформации характеризуют
степенью пластической деформации e:,
где Н0 и Н – размер образца до и после
деформации соответственно.
С увеличением степени пластической деформации прочность и твердость повышаются, а пластичность уменьшается (рис. 13). Упрочнение металла при пластической деформации называется наклепом. Упрочнение вызвано:
увеличением плотности дислокаций rдо 1011…1012 см-2;
искажением кристаллической решетки;
дроблением зерен.
Рис. 13. Влияние степени пластической деформации на механические свойства металла
3.2 Влияние нагрева на структуру и свойства деформированного металла
Структура наклепанного металла – неравновесная. Для снятия наклепа его нужно нагреть, при этом протекают процессы возврата и рекристаллизации.