
- •1. Строение металлов. Кристаллизация.
- •1.1. Атомно-кристаллическое строение металлов
- •1.2. Полиморфизм металлов.
- •1.3. Дефекты кристаллического строения металлов
- •1.4. Кристаллизация металлов
- •1.4.1. Термодинамические условия кристаллизации
- •1.4.2. Кинетика процесса кристаллизации. Критический зародыш.
- •1.4.3. Структура металла
- •2. Механические свойства металлов
- •2.1.1. Характеристики прочности
- •2 .1.2. Характеристики пластичности
- •2.2. Методы определения твердости металлов
- •2.3. Характеристики механических свойств, определяемые при динамических нагрузках
- •2.4. Характеристики механических свойств, определяемые при циклических нагрузках
- •3.Пластическая деформация и рекристаллизация
- •3.1. Изменение структуры и свойств металлов при пластической деформации
- •3.2 Влияние нагрева на структуру и свойства деформированного металла
- •3.2.1. Возврат
- •3.2.2. Рекристаллизация
- •4. Теория металлических сплавов
- •4.1. Компоненты и фазы в металлических сплавах
- •4.1.1. Твёрдые растворы
- •4.1.2. Химические соединения
- •4.2. Диаграммы фазового равновесия (диаграммы состояния)
- •4.2.1. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твёрдом состоянии
- •4.2.2 Диаграмма состояния сплавов с ограниченной растворимостью и эвтектикой
- •4.3. Связь диаграмм состояния со свойствами сплавов
- •5. Железо и сплавы на его основе
- •5.1. Компоненты и фазы в системе Fe-c
- •5.2. Диаграмма состояния железо-цементит
- •5.3. Структуры железоуглеродистых сплавов в равновесном состоянии
- •5.4. Серые чугуны
- •5.5. Влияние углерода и постоянных примесей на свойства стали
- •5.6. Легирующие элементы в сталях
- •5.6.1. Фазы в легированных сталях
- •5.6.2. Влияние легирующих элементов на свойства стали
- •5.6.3. Влияние легирующих элементов на полиморфизм железа
- •5.6.4. Структурные классы легированных сталей в равновесном состоянии
- •6. Теория термической обработки стали
- •6.1.Превращение перлита в аустенит при нагреве
- •6.2. Превращения переохлаждённого аустенита
- •6.2.1. Диаграмма изотермического распада переохлаждённого аустенита
- •6.2.2. Перлитное превращение
- •6.2.3. Мартенситное превращение
- •6.2.4. Промежуточное (бейнитное) превращение
- •6.2.5. Превращения аустенита при непрерывном охлаждении
- •6.2.6. Влияние легирующих элементов на распад аустенита
- •6.3. Превращения мартенсита при нагреве (при отпуске)
- •7. Практика термической обработки стали
- •7.1 Отжиг
- •7.2. Нормализация
- •7.2.1. Классификация сталей по структуре в нормализованном состоянии
- •7.3. Закалка
- •7.4. Отпуск стали
- •7.4.1. Отпускная хрупкость
- •7.5. Закаливаемость и прокаливаемость стали
- •7.6. Способы поверхностного упрочнения сталей
- •7.6.1. Поверхностная закалка стали с индукционным нагревом (закалка твч)
- •7.6.2. Цементация
- •7.6.3. Азотирование
- •8. Стали
- •8.1. Классификация сталей
- •8.2. Маркировка сталей
- •8.3. Конструкционные стали общего назначения
- •8.3.1.Цементуемые стали
- •8.3.2.Улучшаемые стали
- •8.3.3.Рессорно-пружинные стали
- •8.4. Конструкционные стали специального назначения
- •8.4.1. Износостойкие стали
- •8.4.2. Стали, устойчивые против коррозии
- •8.4.3. Жаростойкие стали
- •8.4.4. Жаропрочные стали
- •8.5. Инструментальные стали
- •8.5.1. Стали для режущих инструментов
- •8.5.2. Стали для измерительных инструментов
- •8.5.3. Стали для штампов
- •9. Сплавы цветных металлов
- •9.1. Алюминий и его сплавы
- •9.1.3. Литейные алюминиевые сплавы
- •9.1.4. Порошковые алюминиевые сплавы
- •9.2. Медь и ее сплавы
- •9.2.1. Латуни
- •9.2.2. Бронзы
- •9.2.2.1. Оловянные бронзы
- •9.2.2.2 Алюминиевые бронзы
- •9.2.2.3. Кремнистые бронзы
- •9.2.2.4. Свинцовые бронзы
- •9.3. Подшипниковые сплавы
- •9.4. Титан и его сплавы
7. Практика термической обработки стали
Термообработка стали состоит в нагреве до определённой температуры, выдержке и охлаждении. Основные параметры термообработки:
температура нагрева выбирается на основе протекающих фазовых превращений в твердом состоянии,
скорость охлаждения (охлаждающая среда) выбирается в зависимости от необходимости получения той или иной структуры.
Время выдержки при температуре нагрева должно обеспечить прогрев детали по объёму и завершение фазовых превращений.
Виды термообработки:
отжиг,
нормализация,
закалка
отпуск.
Отжиг, нормализация и закалка основаны на распаде аустенита при охлаждении. Отпуск основан на превращении мартенсита при нагреве.
7.1 Отжиг
Цель отжига – получение равновесной структуры. Это достигается путем медленного охлаждения детали вместе с печью (рис. 38). Структуры сталей после отжига соответствуют равновесной диаграмме состояния (Fe-Fe3C):
доэвтектоидных - П+Ф,
эвтектоидной – П,
заэвтектоидных – П+ЦII.
Рис. 38. Диаграмма изотермического распада аустенита для эвтектоидной стали с нанесенными на нее скоростями охлаждения при различных видах термообработки
Виды отжига:
Рекристаллизационный отжиг проводится для снятия наклёпа. Температура нагрева сталей 650…700°С (Рис.39).
Отжиг для снятия остаточных напряжений (в отливках, сварных соединениях и др.) проводится при температуре 550..650°С.
Диффузионный отжиг (гомогенизация) применяется для легированных сталей с целью устранения химической и структурной неоднородности, Тнагр= 1100..1200°С (Рис.39), выдержка 15..20 часов. После диффузионного отжига формируется крупнозернистая структура (П+Ф).
Полный отжиг проводится для доэвтектоидных сталей с целью получения мелкозернистой равновесной структуры с пониженной твёрдостью и высокой пластичностью и снятия внутренних напряжений. Полный отжиг проводится при температуре на 30..50°С выше линии АС3 (Рис.38), происходит полная фазовая перекристаллизация, структура – П+Ф, мелкозернистая. Полный отжиг заэвтектоидных сталей не применяется, так как приводит к образованию структуры П+ЦII с хрупкой цементитной сеткой.
Неполный отжиг доэвтектоидных сталей проводится при температуре на 10…30°С выше линии АС1 (Рис.39) с целью снизить твёрдость для улучшения обработки резанием. Происходит частичная перекристаллизация. Применяется вместо полного отжига, если не требуется измельчение зерна.
Для заэвтектоидных сталей назначается только неполный отжиг. Он проводится при температуре на 10…30°С выше линии АС1 (Рис.39) с целью получения зернистого перлита. Такой отжиг называется сфероидизирующим.
Изотермический отжиг применяется для легированных сталей и заключается в нагреве выше линии АС3, быстром охлаждении до 620…660°С с последующей изотермической выдержкой в течение 3…6 часов до полного распада аустенита с образованием сорбита пластинчатого. Далее ведут охлаждение на воздухе.
Рис. 39. «Стальной угол» диаграммы состояния Fe-Fe3C с нанесенными температурами нагрева при различных видах отжига