
- •Предисловие
- •Введение Предмет физики и ее связь с другими науками
- •Единицы физических величин
- •1 Физические основы механики Глава 1 Элементы кинематики § 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
- •§ 2. Скорость
- •§ 3. Ускорение и его составляющие
- •§ 4. Угловая скорость и угловое ускорение
- •Глава 2 Динамика материальной точки и поступательного движения твердого тела § 5. Первый закон Ньютона. Масса. Сила
- •§ 6. Второй закон Ньютона
- •§ 7. Третий закон Ньютона
- •§ 8. Силы трения
- •§ 9. Закон сохранения импульса. Центр масс
- •§ 10. Уравнение движения тела переменной массы
- •Глава 3 Работа и энергия §11. Энергия, работа, мощность
- •§ 12. Кинетическая и потенциальная энергии
- •§ 13. Закон сохранения энергии
- •§ 14. Графическом представление энергии
- •§ 15. Удар абсолютно упругих и неупругих тел
- •Глава 4 Механика твердого тела § 16. Момент инерции
- •§ 17. Кинетическая энергия вращения
- •§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела
- •§ 19. Момент импульса и закон то сохранения
- •§ 20. Свободные оси. Гироскоп
- •§ 21. Деформации твердого тела
- •Глава 5 Тяготение. Элементы теории поля § 22. Законы Кеплера. Закон всемирного тяготения
- •§ 23. Сила тяжести и вес. Невесомость
- •§ 24. Поле тяготения и то напряженность
- •§ 25. Работа в поле тяготения. Потенциал поля тяготения
- •§ 26. Космические скорости
- •§ 27. Неинерциальные системы отсчета. Силы инерции
- •Глава 6 Элементы механики жидкостей § 28. Давление в жидкости и газе
- •§ 29. Уравнение неразрывности
- •§ 30. Уравнение Бернулли и следствия из него
- •§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- •§ 32. Методы определения вязкости
- •§ 33. Движение тел в жидкостях и газах
- •Глава 7 Элементы специальной (частной) теории относительности § 34. Преобразования Галилея. Механический принцип относительности
- •§ 35. Постулаты специальной (частной) теории относительности
- •§ 36. Преобразования Лоренца
- •§ 37. Следствия из преобразований Лоренца
- •§ 38. Интервал между событиями
- •§ 39. Основной закон релятивистской динамики материальной точки
- •§ 40. Закон взаимосвязи массы и энергии
- •2 Основы молекулярной физики и термодинамики Глава 8 Молекулярно-кинетическая теория идеальных газов § 41. Статистический и термодинамический методы. Опытные законы идеального газа
- •§ 42. Уравнение Клапейрона — Менделеева
- •§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов
- •§ 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения
- •§ 45. Барометрическая формула. Распределение Больцмана
- •§ 46. Среднее число столкновений и средняя длина свободного пробега молекул
- •§ 47. Опытное обоснование молекулярно-кинетической теории
- •§ 48. Явления переноса в термодинамически неравновесных системах
- •§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов
- •Глава 9 Основы термодинамики § 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •§ 51. Первое начало термодинамики
- •§ 52. Работа газа при изменении его объема
- •§ 53. Теплоемкость
- •§ 54. Применение первого начала термодинамики к изопроцессам
- •§ 55. Адиабатический процесс. Политропный процесс
- •§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы
- •§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- •§ 58. Второе начало термодинамики
- •§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- •Глава 10 Реальные газы, жидкости и твердые тела § 60. Силы и потенциальная энергия межмолекулярного взаимодействия
- •§ 61. Уравнение Ван-дер-Ваальса
- •§ 62. Изотермы Ван-дер-Ваальса и их анализ
- •§ 63. Внутренняя энергия реального газа
- •§ 64. Эффект Джоуля — Томсона
- •§ 65. Сжижение газов
- •§ 66. Свойства жидкостей. Поверхностное натяжение
- •§ 67. Смачивание
- •§ 68. Давление под искривленной поверхностью жидкости
- •§ 69. Капиллярные явления
- •§ 70. Твердые тела. Моно- и поликристаллы
- •§ 71. Типы кристаллических твердых тел
- •§ 72. Дефекты в кристаллах
- •§ 73. Теплоемкость твердых тел
- •§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- •§ 75. Фазовые переходы I и п рода
- •§ 76. Диаграмма состояния. Тройная точка
- •3 Электричество и электромагнетизм Глава 11 Электростатика § 77. Закон сохранения электрического заряда
- •§ 78. Закон Кулона
- •§ 79. Электростатическое поле. Напряженность электростатического поля
- •§ 80. Принцип суперпозиции электростатических полей. Поле диполя
- •§ 81. Теорема Гаусса для электростатического поля в вакууме
- •§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •§ 83. Циркуляция вектора напряженности электростатического поля
- •§ 84. Потенциал электростатического поля
- •§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- •§ 86. Вычисление разности потенциалов по напряженности поля
- •§ 87. Типы диэлектриков. Поляризация диэлектриков
- •§ 88. Поляризованность. Напряженность поля в диэлектрике
- •§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
- •§ 90. Условия на границе раздела двух диэлектрических сред
- •§ 91. Сегнетоэлектрики
- •§ 92. Проводники в электростатическом поле
- •§ 93. Электрическая емкость уединенного проводника
- •§ 94. Конденсаторы
- •§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- •Глава 12 Постоянный электрический ток § 96. Электрический ток, сила и плотность тока
- •§ 97. Сторонние силы. Электродвижущая сила и напряжение
- •§ 98. Закон Ома. Сопротивление проводников
- •§ 99. Работа и мощность тока. Закон Джоуля — Ленца
- •§ 100. Закон Ома для неоднородного участка цепи
- •§ 101. Правила Кирхгофа для разветвленных цепей
- •Глава 13 Электрические токи в металлах, вакууме и газах § 102. Элементарная классическая теория электропроводности металлов
- •§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- •§ 104. Работа выхода электронов из металла
- •§ 105. Эмиссионные явления и их применение
- •§ 106. Ионизация газов. Несамостоятельный газовый разряд
- •§ 107. Самостоятельный газовый разряд и его типы
- •§ 108. Плазма и ее свойства
- •Глава 14 Магнитное поле § 109.Магнитное поле и его характеристики
- •§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- •§ 111. Закон Ампера. Взаимодействие параллельных токов
- •§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- •§ 113. Магнитное поле движущегося заряда
- •§ 114. Действие магнитного поля на движущийся заряд
- •§ 115. Движение заряженных частиц в магнитном поле
- •§ 116. Ускорители заряженных частиц
- •§ 117. Эффект Холла
- •§ 118. Циркуляция вектора в магнитного поляввакууме
- •§ 119. Магнитные поля соленоида и тороида
- •§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля в
- •§ 121. Работа по перемещению проводника и контура с током в магнитном поле
- •Глава 15 Электромагнитная индукция §122. Явление электромагнитной индукции (опыты Фарадея)
- •§ 123. Закон Фарадея и его вывод из закона сохранения энергии
- •§ 124. Вращение рамки в магнитном поле
- •§ 125. Вихревые токи (токи Фуко)
- •§ 126. Индуктивность контура. Самоиндукция
- •§ 127. Токи при размыкании и замыкании цепи
- •§ 128. Взаимная индукция
- •§ 129. Трансформаторы
- •§ 130. Энергия магнитного поля
- •Глава 16 Магнитные свойства вещества § 131. Магнитные моменты электронов и атомов
- •§ 133. Намагниченность. Магнитное поле в веществе
- •§ 134. Условия на границе раздела двух магнетиков
- •§ 135. Ферромагнетики и их свойства
- •§ 136. Природа ферромагнетизма
- •Глава 17 Основы теории Максвелла для электромагнитного поля § 137. Вихревое электрическое поле
- •§ 138. Ток смещения
- •§ 139. Уравнения Максвелла для электромагнитного поля
- •4 Колебания и волны Глава 18 Механические и электромагнитные колебания § 140. Гармонические колебания и их характеристики
- •§ 141. Механические гармонические колебания
- •§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники
- •§ 143. Свободные гармонические колебания в колебательном контуре
- •§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •§ 145. Сложение взаимно перпендикулярных колебаний
- •§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания
- •§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- •§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
- •§ 148. Переменный ток
- •§ 150. Резонанс напряжений
- •§ 151. Резонанс токов
- •§ 152. Мощность, выделяемая в цепи переменного тока
- •Глава 19 Упругие волны § 153. Волновые процессы. Продольные и поперечные волны
- •§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •§ 155. Принцип суперпозиции. Групповая скорость
- •§ 156. Интерференция волн
- •§ 157. Стоячиеволны
- •§ 158. Звуковые волны
- •S159. Эффект Доплере в акустике
- •§ 160. Ультразвук и его применение
- •Глава 20 Электромагнитные волны § 161. Экспериментальноеполучение электромагнитных волн
- •§ 162. Дифференциальное уравнение электромагнитной волны
- •§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля
- •§ 164. Излучение диполя. Применение электромагнитных волн
- •5 Оптика. Квантовая природа излучения Глава 21 Элементы геометрической и электронной оптики § 165. Основные законы оптики. Полное отражение
- •§ 166. Тонкие линзы. Изображение предметов с помощью линз
- •§ 187. Аберрации (погрешности) оптических систем
- •§ 168. Основные фотометрические величины и их единицы
- •§ 189. Элементы электронной оптики
- •Глава 22 Интерференция света § 170. Развитие представлений о природе света
- •§ 171. Когерентность и монохроматичность световых волн
- •§ 172. Интерференция света
- •§ 173. Методы наблюдения интерференции света
- •§ 174. Интерференция света в тонких пленках
- •§ 175. Применение интерференции света
- •Глава 23 Дифракция света § 176. Принцип Гюйгенса — Френеля
- •§ 177. Метод зон Френеля. Прямолинейное распространение света
- •§ 178. Дифракция Френеля на круглом отверстии и диске
- •§ 178. Дифракция Фраунгофера на одной щели
- •§ 180. Дифракция Фраунгофера на дифракционной решетке
- •§ 181. Пространственная решетка. Рассеяние света
- •§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- •§ 183. Разрешающая способность оптических приборов
- •§ 184. Понятие о голографии
- •Глава 24 Взаимодействие электромагнитных волн с веществом § 185. Дисперсия света
- •§ 186. Электронная теория дисперсии светя
- •§ 187. Поглощение (абсорбция) света
- •§ 188. Эффект Доплера
- •§ 189. Излучение Вавилова — Черенкова
- •Глава 25 Поляризация света § 190. Естественный и поляризованный свет
- •§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •§ 192. Двойное лучепреломление
- •§ 193. Поляризационные призмы и поляроиды
- •§ 194. Анализ поляризованного света
- •§ 195. Искусственная оптическая анизотропия
- •§ 196. Вращение плоскости поляризации
- •Глава 26 Квантовая природа излучения § 197. Тепловое излучение и его характеристики
- •§ 188. Закон Кирхгофа
- •§ 199. Законы Стефана — Больцмана и смещения Вина
- •§ 200. Формулы Рэлея — Джинса и Планка
- •§ 201. Оптическая пирометрия. Тепловые источники света
- •§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •§ 204. Применение фотоэффекта
- •§ 205. Масса и импульс фотона. Давление света
- •§ 206. Эффект Комптона и его элементарная теория
- •§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
- •6 Элементы квантовой физики атомов, молекул и твердых тел Глава 27 Теория атома водорода по Бору § 208. Модели атома Томсона и Резерфорда
- •§ 209. Линейчатый спектр атома водорода
- •§ 210. Постулаты Бора
- •§ 211. Опыты Франка и Герца
- •§ 212. Спектр атома водорода по Бору
- •Глава 28 Элементы квантовой механики § 213. Корпускулярно-волновой дуализм свойств вещества
- •§ 214. Некоторые свойства волн да Бройля
- •§ 215. Соотношение неопределенностей
- •§ 216. Волновая функция и ее статистический смысл
- •§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •§ 218. Принцип причинности в квинтовой механике
- •§ 219. Движение свободной частицы
- •§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- •§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- •§ 222. Линейный гармонический осциллятор в квантовой механике
- •Глава 29 Элементы современной физики атомов и молекул § 223. Атом водорода в квантовой механике
- •§ 225. Спин электрона. Спиновое квантовое число
- •§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
- •§ 227. Принцип Паули. Распределение электронов в атоме по состояниям
- •§ 228. Периодическая система элементов Менделеева
- •§ 229. Рентгеновские спектры
- •§ 230. Молекулы: химические связи, понятие об энергетических уровнях
- •§ 231. Молекулярные спектры. Комбинационное рассеяние света
- •§ 232. Поглощение. Спонтанное и вынужденное излучения
- •§ 233. Оптические квантовые генераторы (лазеры)
- •Глава 30 Элементы квантовой статистики § 234. Квантовая статистика. Фазовое пространство. Функция распределения
- •§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
- •§ 236. Вырожденный электронный газ в металлах
- •§ 237. Понятие о квантовой теории теплоемкости. Фононы
- •§ 238. Выводы квантовой теории электропроводности металлов
- •§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона
- •Глава 31 Элементы физики твердого тела § 240. Понятие о зонной теории твердых тел
- •§ 241. Металлы, диэлектрики и полупроводники по зонной теории
- •§ 242. Собственная проводимость полупроводников
- •§ 243. Примесная проводимость полупроводников
- •§ 244. Фотопроводимость полупроводников
- •§ 245. Люминесценция твердых тел
- •§ 246. Контакт двух металлов по зонной теории
- •§ 247. Термоэлектрические явления и их применение
- •§ 248. Выпрямление на контакте металл — полупроводник
- •§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)
- •§ 250. Полупроводниковые диоды и триоды (транзисторы)
- •7 Элементы физики атомного ядра и элементарных частиц Глава 32 Элементы физики атомного ядра § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •§ 252. Дефект массы и энергия связи ядра
- •§ 253. Спин ядра и его магнитный момент
- •§ 254. Ядерные силы. Модели ядра
- •§ 255. Радиоактивное излучение и его виды
- •§ 256. Закон радиоактивного распада. Правила смещения
- •§ 257. Закономерности-распада
- •§ 259. Гамма-излучение и его свойства
- •§ 260. Резонансное поглощение-излучения (эффект Мёссбауэра*)
- •§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
- •§ 262. Ядерные реакции и их основные типы
- •§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
- •§ 265. Реакция деления ядра
- •§ 266. Цепная реакция деления
- •§ 267. Понятие о ядерной энергетике
- •§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •Глава 33 Элементы физики элементарных частиц § 269. Космическое излучение
- •§ 270. Мюоны и их свойства
- •§ 271. Мезоны и их свойства
- •§ 272. Типы взаимодействий элементарных частиц
- •§ 273. Частицы и античастицы
- •§ 274. Гипероны. Странность и четность элементарных частиц
- •§ 275. Классификация элементарных частиц. Кварки
- •Заключение
- •Оглавление
§ 37. Следствия из преобразований Лоренца
1. Одновременность
событий в разных системах отсчета.Пусть в системеКв точках с
координатамиx1иx2в моменты
времениt1иt2происходят два события. В системеК'
им соответствуют координатыи
и моменты времени
и
.
Еслисобытия в системе К происходят
в одной точке (x1
=х2)
и являются одновременными
(t1
=t2),
то, согласно преобразованиям Лоренца
(36.3),
т. е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.
Если события в системе К пространственно разобщены(х1 x2),но одновременны (t1 = t2),то в системе К',согласно преобразованиям Лоренца (36.3),
Таким образом, в
системе К'эти события,оставаясь
пространственно разобщенными, оказываются
и неодновременными.Знак разности
определяется знаком выраженияv(x1–x2),поэтому в различных точках системы
отсчетаК'(при разныхv)разность
будет различной по величине и может
отличаться по знаку. Следовательно, в
одних системах отсчета первое событие
может предшествовать второму, в то время
как в других системах отсчета, наоборот,
второе событие предшествует первому.
Сказанное, однако, не относится к
причинно-следственным событиям, так
как можно показать, что порядок следования
причинно-следственных событий одинаков
во всех инерциальных системах отсчета.
2. Длительность событий в разных системах отсчета.Пусть в некоторой точке (с координатойх), покоящейся относительно системыК, происходит событие, длительность которого (разность показаний часов в конце и начале события) = t2 – t1, где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системеК'
(37.1)
причем началу и концу события, согласно (36.3), соответствуют
(37.2)
Подставляя (37.2) в (37.1), получаем
или
(37.3)
Из соотношения (37.3) вытекает, что <', т. е.длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна.Этот результат может быть еще истолкован следующим образом: интервал времени',отсчитанный по часам в системеК', сточки зрения наблюдателя в системеК,продолжительнее интервала, отсчитанного по его часам. Следовательно,часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т. е. ход часов замедляется в системе отсчета, относительно которой часы движутся. На основании относительности понятий «неподвижная» и «движущаяся» системы соотношения дляи' обратимы. Из (37.3) следует, что замедление хода часов становится заметным лишь при скоростях, близких к скорости распространения света в вакууме.
В связи с обнаружением
релятивистского эффекта замедления
хода часов в свое время возникла проблема
«парадокса часов» (иногда рассматривается
как «парадокс близнецов»), вызвавшая
многочисленные дискуссии. Представим
себе, что осуществляется фантастический
космический полет к звезде, находящейся
на расстоянии 500 световых лет (расстояние,
на которое свет от звезды до Земли
доходит за 500 лет), со скоростью, близкой
к скорости света (=0,001).По земным часам полет до звезды и обратно
продлится 1000 лет, в то время как для
системы корабля и космонавта в нем
такое же путешествие займет всего 1 год.
Таким образом, космонавт возвратится
на Землю в
раз более молодым, чем его брат-близнец,
оставшийся на Земле. Это явление,
получившее название парадокса
близнецов,в действительности
парадокса нtсодержит.
Дело в том, что принцип относительности
утверждает равноправность не всяких
систем отсчета, а только инерциальных.
Неправильность рассуждения состоит
в том, что системы отсчета, связанные с
близнецами, не эквивалентны: земная
система инерциальна, а корабельная —
неинерциальна, поэтому к ним принцип
относительности неприменим.
Релятивистский
эффект замедления хода часов является
совершенно реальным и получил
экспериментальное подтверждение при
изучении нестабильных, самопроизвольно
распадающихся элементарных частиц в
опытах с -мезонами.
Среднее время жизни покоящихся-мезонов
(по часам, движущимся вместе с ними)
2,210–8с. Следовательно,-мезоны,
образующиеся в верхних слоях атмосферы
(на высоте30
км) и движущиеся со скоростью, близкой
к скоростис,должны были бы проходить
расстоянияс
6,6 м, т. е. не могли бы достигать земной
поверхности, что противоречит
действительности. Объясняется это
релятивистским эффектом замедления
хода времени: для земного наблюдателя
срок жизни-мезона'
=/,а путь этих частиц в атмосфереv'
=c'
=c/
.
Так как
1,
тоv'>>c.
3. Длинател
в разныхсистемах отсчета.Рассмотрим стержень, расположенный
вдоль осих'и покоящийся относительно
системыК'.Длина стержня в системеК'будет,где
и
—не изменяющиеся со временемt'координаты начала и конца стержня, а
индекс 0 показывает, что в системе отсчетаК'стержень покоится. Определим
длину этого стержня в системеК,относительно которой он движется со
скоростьюv.Для этого необходимо измерить координаты
его концовx1иx2 в системеК
в один и тот же момент времени t.Их
разностьl = х2
– х1и определяет длину стержня
в системеК.Используя преобразования
Лоренца (36.3), получим
т. е.
(37.4)
Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К,то, определяя его длину в системеК',опять-таки придем к выражению (37.4).
Из выражения (37.4)
следует, что линейный размер тела,
движущегося относительно инерциальной
системы отсчета, уменьшается в направлении
движения в
раз, т. е. так называемоелоренцево
сокращение длинытем больше, чем
больше скорость движения.Из второго
и третьего уравнений преобразований
Лоренца (36.3) следует, что
т. е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится.
4. Релятивистский закон сложения скоростей.Рассмотрим движение материальной точки в системеК',в свою очередь движущейся относительно системыК со скоростьюv. Определим скорость этой же точки в системеК.Если в системеКдвижение точки в каждый момент времениtопределяется координатамих, у, z, а в системеК' в момент времениt' — координатамих', у', z',то
представляют собой соответственно проекции на оси х, у, zих', у', z'вектора скорости рассматриваемой точки относительно системКиК'. Согласно преобразованиям Лоренца (36.3),
Произведя соответствующие преобразования, получаем релятивистский закон сложения скоростейспециальной теории относительности:
(37.5)
Если материальная
точка движется параллельно оси х,то скоростьиотносительно системыКсовпадает сux,
а скоростьи'относительноК' —с.
Тогда закон сложения скоростей
примет вид
(37.6)
Легко убедиться в том, что если скорости v, и' и ималы по сравнению со скоростьюс, то формулы (37.5) и (37.6) переходят в закон сложения скоростей в классической механике (см. (34.4)). Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью распространения света в вакууме) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей.
Релятивистский
закон сложения скоростей подчиняется
второму постулату Эйнштейна (см. §
35). Действительно, если u'
=c, то формула (37.6)
примет вид(аналогично можно показать, что прии
= сскоростьu'также равнас). Этот результат
свидетельствует о том, что релятивистский
закон сложения скоростей находится в
согласии с постулатами Эйнштейна.
Докажем также, что если складываемые скорости сколь угодно близки к скорости с, то их результирующая скорость всегда меньше или равнас. В качестве примера рассмотрим предельный случайu' =v =с. После подстановки в формулу (37.6) получими = с.Таким образом, при сложении любых скоростей результат не может превысить скорости светасв вакууме.Скорость света в вакууме есть предельная скорость, которую невозможно превысить. Скорость света в какой-либо среде, равнаяс/n(n— абсолютный показатель преломления среды), предельной величиной не является (подробнее см. § 189).