
- •Т.П. Макарова, э.И. Марданова, л.Ф. Корепанова Технология переработки нефти и газа
- •© Альметьевский государственный
- •Общие указания
- •I. Химический состав нефти
- •1. Элементный и фракционный состав нефти
- •2.1. Парафиновые углеводороды
- •2.3. Нафтеновые углеводороды
- •2.4. Ароматические углеводороды
- •2.5. Гибридные углеводороды
- •2.6. Гетероатомные соединения нефти
- •2.6.1. Серусодержащие соединения
- •2.6.2. Азотсодержащие соединения
- •Распределение азотистых соединений
- •2.6.3. Кислородсодержащие соединения
- •3. Классификация нефтей
- •3.1. Химическая классификация
- •3.2. Технологическая классификация
- •1. Классификация процессов переработки нефти, газовых конденсатов и газов
- •2. Основные этапы нефтепереработки
- •3. Подготовка нефти к переработке
- •Сырая нефть; II- деэмульгатор; III- сброс воды; IV- подача щелочной воды; V- обессоленная и обезвоженная нефть
- •3.1. Нефтяные эмульсии
- •4. Первичная переработка нефти
- •4.1. Атмосферная и вакуумная перегонка нефти
- •4.2. Вторичная перегонка бензинов
- •5. Вторичная переработка нефти
- •5.1. Термический крекинг
- •5.2. Коксование
- •5.3. Пиролиз
- •5.4. Каталитический крекинг
- •5.5. Риформинг
- •5.6. Гидрогенизация
- •6. Очистка нефтепродуктов
- •6.1. Очистка светлых нефтепродуктов
- •6.2. Очистка смазочных масел
- •7. Типы нефтеперерабатывающих заводов
- •8. Переработка газов
- •8.1. Исходное сырье и продукты переработки газов
- •8.2. Основные объекты газоперерабатывающих заводов
- •8.3. Отбензинивание газов
- •8.3.1. Компрессионный метод
- •8.3.2. Абсорбционный метод
- •8.3.3. Адсорбционный метод
- •8.3.4. Конденсационный метод
- •8.3.5. Газофракционирующие установки
- •9. Химическая переработка углеводородного сырья
- •9.1. Производство нефтехимического сырья
- •9.2. Производство поверхностно-активных веществ
- •9.3. Производство спиртов
- •9.4. Производство полимеров
- •9.5.2. Синтетические каучуки
- •9.5.3. Пластмассы
- •9.5.4. Синтетические волокна
- •III. Материальные и тепловые расчеты химико-технологических процессов
- •1. Составления материальных балансов
- •И материальные расчеты химико-технологических процессов
- •Материальный баланс на 1т окиси этилена
- •Материальный баланс печи крекинга (на 1000 м3 природного газа)
- •Происходит дальнейшее хлорирование
- •Материальный баланс хлоратора бензола (1т хлорбензола)
- •Образовалось в соответствии с заданным мольным соотношением
- •С воздухом………. 586
- •Материальный баланс реактора для окисления метанола (1ч работы)
- •2. Равновесие химико-технологических процессов
- •3. Составление энергетического (теплового) баланса и тепловые расчеты химико-технологических процессов
- •4. Массообменные процессы
- •Возьмем при 1900°c
- •Бензол ………… 49,063 Дихлорбензол ………… 53,05
- •Суммарный тепловой эффект при хлорировании 1т бензола
- •IV. Расчет ректификационных колонн
- •2. Температурный режим
- •Решение.Парциальное давление паров бензина равно
- •Продолжение таблицы
- •3. Высота
- •4. Материальный и тепловой балансы
- •Общее количество тепла, вводимого в колонну, составит
- •V. Расчет реакционных устройств термических процессов
- •1. Реакционные змеевики и камеры установок термического крекинга под давлением
- •1.1. Определение скорости реакции
- •1.2. Расчет реакционного змеевика печи термического крекинга
- •1.3. Расчет реакционной камеры
- •2. Реакционные аппараты установок коксования нефтяных остатков
- •2.1. Определение выхода продуктов коксования
- •2.2. Расчет реактора и коксонагревателя на установках коксования в подвижном слое гранулированного коксового теплоносителя
- •2.3. Расчет реактора на установках коксования в кипящем слое коксового теплоносителя
- •3.1. Расчет печи трубчатой установки пиролиза
- •Учитывая, что
- •Диаметр труб рассчитывают по формуле
- •3.2. Пиролиз на установках с подвижным слоем твердого теплоносителя
- •3.3. Установки с кипящим слоем твердого теплоносителя
- •Находят объем катализатора в реакторе
- •1. Процесс каталитического алкилирования парафиновых и ароматических углеводородов олефинами
- •Рассчитывают выход алкилата
- •Теплота сгорания нефтепродуктов
- •Среднее число атомов в молекуле сырья (т) определяется по формуле
- •Итого………..-43710
- •Вычисляют приближенно молекулярную массу групп углеводородов
- •Лабораторная работа № 1 Тема: «Определение содержания воды в нефти методом Дина и Старка»
- •1.1. Основные понятия
- •Требования к содержанию воды в нефти, поставляемых с промыслов
- •1.2. Описание методики определения содержания воды в нефти методом Дина и Старка
- •Лабораторная работа № 2 Тема: «Определение механических примесей в нефти
- •2.1. Основные понятия
- •2.2 Описание методики определения механических примесей в нефти
- •Лабораторная работа № 3 Тема: «Определение содержания солей в нефти»
- •3.1. Основные понятия
- •3.2 Описание методики определения содержания солей в нефти
- •Приложение 1
- •Подписано в печать 20.09.2007 г.
2.1. Парафиновые углеводороды
Парафиновые углеводороды - алканы (СnН2n+2) - составляют значительную часть групповых компонентов нефтей и природных газов всех месторождений. Общее содержание их в нефтях составляет 25-35 % масс. (не считая растворенных газов) и только в некоторых парафинистых нефтях, например типа мангышлакской, озек-суатской, достигает 40-50 % масс. Наиболее широко представлены в нефтях алканы нормального строения и изоалканы преимущественно монометилзамещенные с различным положением метильной группы в цепи. С повышением молекулярной массы фракций нефти содержание в них алканов уменьшается. Попутные нефтяные и природные газы практически полностью, а прямогонные бензины чаще всего на 60-70 % состоят из алканов. В масляных фракциях их содержание снижается до 5-20 % масс.
Газообразные алканы. Алканы С1-С4 метан, этан, пропан, бутан и изобутан, а также 2,2-диметилпропан при нормальных условиях находятся в газообразном состоянии. Все они входят в состав природных, газоконденсатных и нефтяных попутных газов.
Природные газы добывают из чисто газовых месторождений. Они состоят в основном из метана (93-99 % масс.) с небольшой примесью его гомологов, неуглеводородных компонентов: сероводорода, диоксида углерода, азота и редких газов (Не, Аг и др.). Газы газоконденсатных месторождений и нефтяные попутные газы отличаются от чисто газовых тем, что метану в них сопутствуют в значительных концентрациях его газообразные гомологи С2-С4 и выше. Поэтому они получили название жирных газов. Из них получают легкий газовый бензин, который является добавкой к товарным бензинам, а также сжатые жидкие газы в качестве горючего. Этан, пропан и бутаны после разделения служат сырьем для нефтехимии.
Жидкие алканы. Алканы от С5 до C15 в обычных условиях представляют собой жидкости, входящие в состав бензиновых (С5-С10) и керосиновых (С11-C15) фракций нефтей. Исследованиями установлено, что жидкие алканы С5-С9 имеют в основном нормальное или слаборазветвленное строение. Исключением из этого правила являются анастасиевская нефть Краснодарского края и нефть морского месторождения Нефтяные Камни, в которых содержатся сильноразветвленные изопарафины.
Твердые алканы. Алканы С16 и выше при нормальных условиях - твердые вещества, входящие в состав нефтяных парафинов и церезинов. Они присутствуют во всех нефтях, чаще в небольших количествах (до 5 % масс.) в растворенном или взвешенном кристаллическом состоянии. В парафинистых и высокопарафинистых нефтях их содержание повышается до 10-20 % масс.
Нефтяные парафины представляют собой смесь преимущественно алканов разной молекулярной массы, характеризуются пластинчатой или ленточной структурой кристаллов. При перегонке мазута в масляные фракции попадают твердые алканы С18-С35 с молекулярной массой 250-500. В гудронах концентрируются более высокоплавкие алканы С36-С55 - церезины, отличающиеся от парафинов мелкокристаллической структурой, более высокой молекулярной массой (500-700) и температурой плавления (65-88°С вместо 45-54°С у парафинов). Исследованиями установлено, что твердые парафины состоят преимущественно из алканов нормального строения, а церезины - в основном из циклоалканов и аренов с длинными алкильными цепями нормального и изостроения. Церезины входят также в состав природного горючего минерала - озокерита.
Парафины и церезины являются нежелательными компонентами в составе масляных фракций нефти, поскольку повышают температуру их застывания. Они находят разнообразное техническое применение во многих отраслях промышленности: электро- и радиотехнической, бумажной, спичечной, кожевенной, парфюмерной, химической и др. Они применяются также в производстве пластичных смазок, изготовлении свечей и т. д. Особо важная современная область применения - как нефтехимическое сырье для производства синтетических жирных кислот, спиртов, поверхностно-активных веществ, деэмульгаторов, стиральных порошков и т. д.
2.2. Непредельные углеводороды (алкены, диалкены)
Непредельные углеводороды (олефины) с общей формулой СnН2n для алкенов и СnН2n-2 для диалкенов в нативных нефтях и природных газах обычно не присутствуют. Они образуются в химических процессах переработки нефти и ее фракций (термический и каталитический крекинг, коксование, пиролиз и др.). В газах этих процессов содержание олефинов С1-С4 составляет 20-60 % маcс. К ним относят этилен, пропилен, бутен-1, бутены-2 (цис- и трансформы), изобутилен, бутадиен. Жидкие алкены (С5-С18) нормального и изостроения входят в состав легких и тяжелых дистиллятов вторичного происхождения.
Все алкены, особенно диалкены, обладают повышенной реакционной способностью в реакциях окисления, алкилирования, полимеризации и др. Присутствие алкенов С5 и выше в нефтепродуктах (топливах, маслах) ухудшает их эксплуатационные свойства (из-за окисляемости и осмоления). В то же время они являются ценным сырьем нефтехимического синтеза в производстве пластмасс, каучуков, моющих средств и т. п.
Содержание непредельных углеводородов в нефтяных фракциях оценивается так называемым йодным числом (И.Ч.), характеризующим присоединение количества граммов йода на 100 г нефтепродукта при их взаимодействии, по специальной методике.