
- •Т.П. Макарова, э.И. Марданова, л.Ф. Корепанова Технология переработки нефти и газа
- •© Альметьевский государственный
- •Общие указания
- •I. Химический состав нефти
- •1. Элементный и фракционный состав нефти
- •2.1. Парафиновые углеводороды
- •2.3. Нафтеновые углеводороды
- •2.4. Ароматические углеводороды
- •2.5. Гибридные углеводороды
- •2.6. Гетероатомные соединения нефти
- •2.6.1. Серусодержащие соединения
- •2.6.2. Азотсодержащие соединения
- •Распределение азотистых соединений
- •2.6.3. Кислородсодержащие соединения
- •3. Классификация нефтей
- •3.1. Химическая классификация
- •3.2. Технологическая классификация
- •1. Классификация процессов переработки нефти, газовых конденсатов и газов
- •2. Основные этапы нефтепереработки
- •3. Подготовка нефти к переработке
- •Сырая нефть; II- деэмульгатор; III- сброс воды; IV- подача щелочной воды; V- обессоленная и обезвоженная нефть
- •3.1. Нефтяные эмульсии
- •4. Первичная переработка нефти
- •4.1. Атмосферная и вакуумная перегонка нефти
- •4.2. Вторичная перегонка бензинов
- •5. Вторичная переработка нефти
- •5.1. Термический крекинг
- •5.2. Коксование
- •5.3. Пиролиз
- •5.4. Каталитический крекинг
- •5.5. Риформинг
- •5.6. Гидрогенизация
- •6. Очистка нефтепродуктов
- •6.1. Очистка светлых нефтепродуктов
- •6.2. Очистка смазочных масел
- •7. Типы нефтеперерабатывающих заводов
- •8. Переработка газов
- •8.1. Исходное сырье и продукты переработки газов
- •8.2. Основные объекты газоперерабатывающих заводов
- •8.3. Отбензинивание газов
- •8.3.1. Компрессионный метод
- •8.3.2. Абсорбционный метод
- •8.3.3. Адсорбционный метод
- •8.3.4. Конденсационный метод
- •8.3.5. Газофракционирующие установки
- •9. Химическая переработка углеводородного сырья
- •9.1. Производство нефтехимического сырья
- •9.2. Производство поверхностно-активных веществ
- •9.3. Производство спиртов
- •9.4. Производство полимеров
- •9.5.2. Синтетические каучуки
- •9.5.3. Пластмассы
- •9.5.4. Синтетические волокна
- •III. Материальные и тепловые расчеты химико-технологических процессов
- •1. Составления материальных балансов
- •И материальные расчеты химико-технологических процессов
- •Материальный баланс на 1т окиси этилена
- •Материальный баланс печи крекинга (на 1000 м3 природного газа)
- •Происходит дальнейшее хлорирование
- •Материальный баланс хлоратора бензола (1т хлорбензола)
- •Образовалось в соответствии с заданным мольным соотношением
- •С воздухом………. 586
- •Материальный баланс реактора для окисления метанола (1ч работы)
- •2. Равновесие химико-технологических процессов
- •3. Составление энергетического (теплового) баланса и тепловые расчеты химико-технологических процессов
- •4. Массообменные процессы
- •Возьмем при 1900°c
- •Бензол ………… 49,063 Дихлорбензол ………… 53,05
- •Суммарный тепловой эффект при хлорировании 1т бензола
- •IV. Расчет ректификационных колонн
- •2. Температурный режим
- •Решение.Парциальное давление паров бензина равно
- •Продолжение таблицы
- •3. Высота
- •4. Материальный и тепловой балансы
- •Общее количество тепла, вводимого в колонну, составит
- •V. Расчет реакционных устройств термических процессов
- •1. Реакционные змеевики и камеры установок термического крекинга под давлением
- •1.1. Определение скорости реакции
- •1.2. Расчет реакционного змеевика печи термического крекинга
- •1.3. Расчет реакционной камеры
- •2. Реакционные аппараты установок коксования нефтяных остатков
- •2.1. Определение выхода продуктов коксования
- •2.2. Расчет реактора и коксонагревателя на установках коксования в подвижном слое гранулированного коксового теплоносителя
- •2.3. Расчет реактора на установках коксования в кипящем слое коксового теплоносителя
- •3.1. Расчет печи трубчатой установки пиролиза
- •Учитывая, что
- •Диаметр труб рассчитывают по формуле
- •3.2. Пиролиз на установках с подвижным слоем твердого теплоносителя
- •3.3. Установки с кипящим слоем твердого теплоносителя
- •Находят объем катализатора в реакторе
- •1. Процесс каталитического алкилирования парафиновых и ароматических углеводородов олефинами
- •Рассчитывают выход алкилата
- •Теплота сгорания нефтепродуктов
- •Среднее число атомов в молекуле сырья (т) определяется по формуле
- •Итого………..-43710
- •Вычисляют приближенно молекулярную массу групп углеводородов
- •Лабораторная работа № 1 Тема: «Определение содержания воды в нефти методом Дина и Старка»
- •1.1. Основные понятия
- •Требования к содержанию воды в нефти, поставляемых с промыслов
- •1.2. Описание методики определения содержания воды в нефти методом Дина и Старка
- •Лабораторная работа № 2 Тема: «Определение механических примесей в нефти
- •2.1. Основные понятия
- •2.2 Описание методики определения механических примесей в нефти
- •Лабораторная работа № 3 Тема: «Определение содержания солей в нефти»
- •3.1. Основные понятия
- •3.2 Описание методики определения содержания солей в нефти
- •Приложение 1
- •Подписано в печать 20.09.2007 г.
8.3. Отбензинивание газов
Для отбензинивания газов используются компрессионный, абсорбционный, адсорбционный и конденсационный методы.
8.3.1. Компрессионный метод
Сущность компрессионного метода заключается в сжатии газа компрессорами и последующем его охлаждении в холодильнике. Уже при сжатии тяжелые компоненты газа частично переходят из газовой фазы в жидкую. С понижением температуры выход жидкой фазы из сжатого газа возрастает.
Компрессионный метод применяют для отбензинивания «жирных» газов, в которых содержится более 1000 г/м3 тяжелых углеводородов. Оптимальным для нефтяных газов является давление компримирования 2-4 МПа.
8.3.2. Абсорбционный метод
Сущность абсорбционного метода состоит в поглощении тяжелых углеводородов из газовых смесей жидкими поглотителями (абсорбентами). В качестве таких поглотителей могут быть использованы керосин, дизельный дистиллят, масла.
При физической абсорбции поглощаемые углеводороды не образуют химических соединений с абсорбентами. Поэтому обычно физическая абсорбция обратима, т.е. поглощенные компоненты можно выделить из абсорбентов. Этот процесс называется десорбцией. Чередование процессов абсорбции и десорбции позволяет многократно применять один и тот же поглотитель.
Количество поглощенных газов при абсорбции увеличивается с повышением давления и понижением температуры. Чем больше молярная масса компонентов газа, тем в большем количестве он поглощается одной и той же жидкостью.
Рис. 2.5. Принципиальная схема абсорбционно-десорбционного процесса.
1 - абсорбер; 2 - холодильник; 3 - насос; 4 - промежуточная емкость; 5 -подогреватель; 6 - десорбер; 7 - гидравлическая турбина.
I- сырьевой газ; II - газ, освобожденный от целевых компонентов; III-регенерированный абсорбент; IV- насыщенный абсорбент; V - целевые компоненты; VI - десорбирующий агент.
Принципиальная схема абсорбционно-десорбционного процесса приведена на рис. 2.5. Исходный (сырьевой) газ I подается в нижнюю часть абсорбера 1. Поднимаясь вверх, газ контактирует с абсорбентом, стекающим по тарелкам абсорбера вниз, в результате чего (вследствие массообмена) целевые компоненты из газа переходят в жидкость. Очищенный газ II выходит из верхней части абсорбера, а насыщенный абсорбент IV - из нижней части.
Насыщенный абсорбент поступает в гидравлическую турбину 7, где совершает полезную работу, приводя в действие насос 3. В результате его давление снижается от давления абсорбции до давления десорбции. Далее насыщенный абсорбент нагревается в подогревателе 5 и поступает в верхнюю часть десорбера 6. В нижнюю часть десорбера 6 подается горячий десорбирующий агент (острый водяной пар) VI. В результате нагрева насыщенного абсорбента происходит процесс десорбции. Испарившиеся целевые компоненты V выходят через верхнюю часть десорбера, а регенерированный абсорбент - через нижнюю часть. Регенерированный абсорбент после рекуперации теплоты в теплообменнике 5 через промежуточную емкость 4 и холодильник 2 насосом 3 возвращается в абсорбер 1.
Применение абсорбционного метода наиболее рационально для отбензинивания газов, содержащих от 200 до 300 г тяжелых углеводородов в 1м3.