Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника.Методичка / Лабораторная работа N7.doc
Скачиваний:
107
Добавлен:
13.05.2015
Размер:
5.6 Mб
Скачать

2.6. Оптопары

Оптопара – это оптоэлектронный прибор, содержащий излучатели и фотоприемники, между которыми имеется оптическая связь и обеспечена электрическая изоляция.

В основе работы оптопары заложено двойное преобразование энергии. Излучатель преобразует входной электрический сигнал в оптическое излучение, а фотоприемник преобразует оптический сигнал в электрический ток или напряжение. Поэтому связь оптопары с внешней входной и выходной цепью электрическая, а внутри связь входа с выходом осуществляется оптическими сигналами. В электрических схемах оптопары выполняют функцию электрической изоляции между входными и выходными цепями (гальваническая развязка). Однако роль оптопары не только в этом. Оптическое управление позволяет получить ряд специфических преимуществ для электронных устройств. К ним относятся: однонаправленность потока информации, отсутствие обратной связи с выхода на вход, широкая полоса пропускания.

Важные достоинства оптопар:

  • возможность бесконтактного (оптического) управления электронными объектами, разнообразие и гибкость конструкторских решений задач управления;

  • невосприимчивость оптических каналов связи к электромагнитным помехам, обеспечивающая высокую помехозащищенность при использовании оптопар с протяженным оптическим каналом, полное исключение взаимных наводок;

  • возможность создания функциональных микроэлектронных устройств с фотоприемниками, характеристики которых под действием оптического излучения изменяются по заданному, сколь угодно сложному, закону;

  • расширение возможностей управления выходным сигналом оптопары воздействием (включая и неэлектрическое) на оптический канал и, как следствие, создание разнообразных датчиков и приборов для передачи информации.

Недостатки оптопар:

  • низкий КПД, обусловленный двойным преобразованием энергии сигнала, значительная потребляемая мощность;

  • сильная температурная зависимость параметров;

  • высокий уровень собственных шумов;

  • конструктивно – технологическое несовершенство, связанное с применением гибридной технологии.

По мере совершенствования материалов, технологии и схемотехники эти недостатки постепенно устраняются.

Структуру оптопары поясняет рис.14, на котором обозначены: И – излучатель; ОК – оптический канал; ФП – фотоприемник.

Излучатель оптопары. Наиболее распространенным излучателем современных оптопар является инжекционный СИД. В перспективе для создания мощных и сверхбыстродействующих оптопар (tпер 10-9…10-10 с) с протяженным оптическим каналом целесообразно и экономически оправдано будет применение полупроводниковых лазеров.

Отличие излучателя оптопары от обычного СИД в конструкции оптического окна. У СИД кольцевая излучающая область размещается вокруг расположенной в центре контактной площадки, поэтому видимая область излучения как бы увеличивается на площадь контактной площадки. В оптопарах излучающая область должна быть минимальной и размер ее ограничивается только допустимой плотностью тока через излучатель. Контактная площадка смещается из центра излучающей области, что обеспечивает минимальное затенение и уменьшает потери излучения при передаче его к фотоприемнику. Малый размер излучающей области обеспечивает также стабильность условий оптической связи.

Оптический канал. Качество оптопары сильно зависит от эффективности передачи энергии от излучателя к приемнику, т.е. от свойств оптического канала. Требования к каналу:

  1. обеспечить заданный уровень электрической изоляции между входом и выходом оптопары;

  2. спектральная согласованность материала оптического канала с излучателем и фотоприемником, обеспечивающая высокую прозрачность для излучения в рабочем диапазоне длин волн;

  3. минимальные потери на отражение на границах И – ОК и ОК – ФП.

В оптопарах используют следующие виды оптических каналов:

  • связь через воздух: характеризуется простотой и высокой электрической изоляцией;

  • связь через воздух с применением оптической фокусировки с помощью линз: обеспечивает лучшую передачу излучения, чем предыдущая;

  • связь с использованием иммерсионной среды (согласующей показатели преломления материалов излучателя, оптического канала и фотоприемника): обеспечивает наилучшие параметры оптического канала;

  • связь посредством световода (жесткого моноволокна): удобна при создании оптоизоляторов с допустимым напряжением более 20…50 кВ.

При выборе оптического канала требования к изоляции решающие при малых расстояниях между излучателем и приемником. При больших расстояниях (например, канал со световодом) более важными становятся требования к спектру пропускания оптического канала.

Фотоприемник. Фотоприемниками современных оптопар преимущественно являются фотодиоды, фототранзисторы и фототиристоры. Их спектральная характеристика охватывает весь видимый диапазон спектра и часть ближней ИК – области.

Кремниевые фотодиоды – хорошие фотоприемники, но для получения на выходе сигнала нужной амплитуды требуется дополнить фотодиод усилителем. Внешние усилители увеличивают габариты схемы, поэтому целесообразно разместить усилитель в корпусе оптопары. Это можно сделать либо по гибридной технологии, допускающей раздельное согласование фотодиода и усилителя и обеспечивающей хорошие оптические и электрические параметры оптопары, либо по интегральной технологии, снижающей как стоимость оптопары так и ее параметры.

Есть два способа совмещения фотоприемника и усилителя:

  1. использование фототранзистора, приемником излучения у которого является коллекторный переход;

  2. использование фотодиода, фототок которого усиливается транзистором, размещенным на том же кристалле.

Широко применяются в оптопарах также составные фототранзисторы и фототиристоры.