Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен БИОЛОГИЯ ответы.doc
Скачиваний:
209
Добавлен:
13.05.2015
Размер:
2.22 Mб
Скачать

1.Уровни организации живого. Человек в системе природы.Уровни организации живой материи — иерархически соподчиненные уровни организации биосистем, отражающие уровни их усложнения. Чаще всего выделяют шесть основных структурных уровней жизни: молекулярный, клеточный, организменный,популяционно-видовой, биогеоценотический и биосферный. В типичном случае каждый из этих уровней является системой из подсистем нижележащего уровня и подсистемой системы более высокого уровня.Тканевый уровень организации жизни.Тканевой уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференцировки клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.Органный уровень организации жизниОрганный уровень. Представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счет разного количества тканей. Для позвоночных характерна цефализация, защищающаяся в сосредоточении важнейших центров и органов чувств в голове.Проблема взаимосвязи и взаимодействия человека и природы на протяжении всей человеческой истории была предметом пристального внимания людей. Самая суть человеческого способа существования в мире заключена во взаимодействии с природой, которая представляет собой всё в мире, что не создано руками человека, и всё то, с чем он так или иначе взаимодействует, т.е. вся совокупность условий существования человека и человечества составляет природу.Формы взаимодействия человеческого общества с природой достаточно много образны. Как правило, происходящие в обществе природные процессы приобретают социальную форму, а природные, прежде всего биологические, закономерности выступают как биосоциальные. Взаимоотношения общества и природы не являются чем-то статичным и неизменным. Они меняются по мере развития общества. За основу периодизации этапов взаимосвязи общества и природы, как правило, берётся характер освоения человеком природы, т.е. основное из отношений человека с окружающей средой. Первый из этапов взаимодействия общества и природы получил название биогенного периода, или присваивающего. Для него характерно то, что древние люди жили за счёт присвоения продуктов биосферы и оказывали обратное воздействие на природу главным образом непосредственно своими естественными органами и силами. По мере того как научно-техническая мощь человека неуклонно возрастает, становится сопоставимой с масштабами действия сил природы, люди получают всё больше поводов для того, чтобы убедиться в опасности неограниченного, бесконтрольного и необдуманного употребления этой мощи. Всё это побуждает общество искать новые формы взаимоотношений с природой. Основу перехода от техногенного к новому периоду - ноогенному или системно-преобразующему обосновал В.И.Вернадский, который видел её в том, что человечество, вооружённое научной мыслью, превращается в мощную силу развития нашей планеты. С захватом человеком биосферы растёт осмысленное осознание единства человека и природы, необходимости их коэволюции, т.е. сотрудничества. 2. Определение понятия жизни на современном этапе науки. Критика метафизических и идеалистических представлений о сущности жизни. Фундаментальные свойства живого.

Довольно трудно дать полное и однозначное определение поня­тию жизни, учитывая огромное разнообразие ее проявлений. В большинстве определений понятия жизни, которые давались мно­гими учеными и мыслителями на протяжении веков, учитыва-лись ведущие качества, отличающие живое от неживого. Например, Аристотель говорил, что жизнь — это «питание, рост и одряхление» организма;А. Л. Лавуазье определял жизнь как «химическую функ­цию»; Г. Р. Тревиранус считал, что жизнь есть «стойкое единообра­зие процессов при различии внешних влияний». Понятно, что такие определения не могли удовлетворить ученых, так как не отражали (и не могли отражать) всех свойств живой материи. Кроме того, наблюде-ния свидетельствуют, что свойства живого не исключи­тельны и уникальны, как это казалось раньше, они по отдельности обнаруживаются и среди неживых объектов. А. И. Опарин опреде­лял жизнь как «особую, очень сложную форму движения материи». Это определение отражает качественное своеобразие жизни, которое нельзя свести к простым химическим или физическим законо­мерностям. Однако и в этом случае определение носит общий ха­рактер и не раскрывает конкретного своеобразия этого движения.Ф. Энгельс в «Диалектике природы» писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является обмен веществом и энергией с окружающей средой».Для практического применения полезны те определения, в которых заложены основные свойства, в обязательном порядке присущие всем живым формам. Вот одно из них: жизнь — это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведе­нию, самосохранению и саморегуляции, обмен веществ, тонко ре­гулируемый поток энергии. Согласно данному определению жизнь представляет собой ядро упорядоченности, распростра­няющееся в менее упорядоченной Вселенной.Жизнь существует в форме открытых систем. Это означает, что любая живая форма не замкнута только на себе, но постоянно обме­нивается с окружающей средой веществом, энергией и информацией.

Основные свойства живого

К основным свойствам живого можно отнести:1. Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).2. Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы, связанные структурно и функционально в единое целое).3. Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды — гомеостаза.4. Обмен веществ и энергии. Живые организмы — открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды — гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составили начальное звено в длинной цепи реакций.5. Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК.6. Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.7. Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.8. Рост и развитие. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит во время индивидуального развития — онтогенеза. На определенном этапе онтогенеза осуществляется рост организма, связанный с репродукцией молекул, клеток и других биологических структур. Рост сопровождается развитием.9. Раздражимость и движение. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости. Организмы отвечают на воздействие движением. Проявление формы движения зависит от структуры организма.

3. Теории происхождения жизни на Земле. Основные этапы развития жизни на Земле (химический, предбиологический, биологический, социальный).

Возникновение жизни или абиогенез — процесс превращения неживой природы в живую.В разное время относительно возникновения жизни на Земле выдвигались следующие гипотезы:Гипотеза стационарного состояния жизни, Гипотеза самозарождения, Гипотеза «первичного бульона»Гипотеза стационарного состояния жизни: Эта теория была распространена в Древнем Китае, Вавилоне и Древнем Египте в качестве альтернативы креационизму, с которым она сосуществовала. Аристотель (384—322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. Согласно этой гипотезе, определённые «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что это активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует также в солнечном свете, тине и гниющем мясе.Согласно теории стационарного состояния, Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень незначительно. Согласно этой версии, виды также никогда не возникали, они существовали всегда, и у каждого вида есть лишь две возможности — либо изменение численности, либо вымирание.В 1924 году будущий академик Опарин опубликовал статью «Происхождение жизни», которая в 1938 году была переведена на английский и возродила интерес к теории самозарождения . Опарин предположил, что в растворах высокомолекулярных соединений могут самопроизвольно образовываться зоны повышенной концентрации, которые относительно отделены от внешней среды и могут поддерживать обмен с ней. Он назвал их Коацерватные капли, или просто коацерваты.Согласно его теории процесс, приведший к возникновению жизни на Земле, может быть разделён на три этапа:Возникновение органических веществ, Возникновение белков, Возникновение белковых тел.Астрономические исследования показывают, что как звёзды, так и планетные системы возникли из газопылевого вещества. Наряду с металлами и их оксидами в нём содержались водородаммиак, вода и простейшийуглеводород — метан.Условия для начала процесса формирования белковых структур установились с момента появления первичного океана (бульона). В водной среде производные углеводородов могли подвергаться сложным химическим изменениям и превращениям. В результате такого усложнения молекул могли образоваться более сложные органические вещества, а именно углеводы.Наука доказала, что в результате применения ультрафиолетовых лучей можно искусственно синтезировать не только аминокислоты, но и другие органические вещества. 4. Эволюционно обусловленные уровни организации жизни на Земле.Живым в современной биологии считается организм, обладающий совокупностью свойств :Сложная, упорядоченная структура. Уровень организации значительно выше, чем в неживых системах.Получение энергии из окружающей среды, использование ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию.Активное реагирование на окружающую среду. Способность реагировать на внешние раздражители – универсальное свойство всех живых существ, как растений, так и животных.Способность не только изменяться, но и усложняться. Они могут создавать новые органы, отличающиеся от породивших их структур. *Способность к самовоспроизведению .Способность передавать потомкам заложенную в них информацию, содержащуюся в генах – единицах наследственности. Эта информация в процессе передачи может видоизменяться и искажаться. Это предопределяет изменчивость живого .Способность приспосабливаться к среде обитания и своему образу жизни.В ходе эволюции происходит повышение уровня организации, усложнение живого (от низших организмов к высшим). Формирование каждой следующей ступени иерархии уровней происходит на основе предыдущей, которая структурно в неё входит (см. также видообразование).Усложнение живого вещества, как всякий длящийся процесс, тоже развертывается во времени, однако самого времени, в непосредственном значении и активном действии, в нем нет; оно неявно входит в него как тактовая частота смены поколений и выражается через изменение фазовых состояний поля жизни. Здесь время представлено числом произведенных эволюционных шагов - завершенных больших и малых биогеохимических циклов. Развитие внекультурного живого вещества обусловлено, главным образом, пространственно-ресурсными ограничениями биосферы. Этот фактор - геометрическая и материально-энергетическая ограниченность жизненного пространства Земли - проявляется в эволюции биологических видов как тенденция наилучшего приспособления организма к внешней природной данности, среде жизни. Стремясь к максимальной адаптации, видовой организм превращается в органический придаток геологической структуры, "автоматизируется" в своем жизнепроявлении и всем существом прочно врастает в биокосный монолит планеты. В конечном счете, внекультурные биологические виды оказываются в хвосте мирового эволюционного процесса, становятся, в космическом масштабе времени, живыми ископаемыми, поскольку неотделимы от физической структуры планеты.Классификация:Характеризуются специфическими взаимодействиями компонентов и отчётливыми особенностями взаимоотношений с ниже и выше лежащими системами.Могут использоваться различные модели и подходы: Химико-волновая, кибернетическая, энтропийно-эволюционная и другие модели, описанные в статье Жизнь.При классификации уровней обычно, для полноты представления, могут включаться уровни неживой материи. В 20-е гг. XX века в философии и науке сформировался системный подход, согласно которому живой мир можно рассматривать как совокупность систем разных уровней организации. При этом элемент системы одного уровня может представлять собой целую систему на другом уровне организации.По Вечирко Д С.Тимофеев-Ресовский выделяет следующие уровни организации жизни:Молекулярно-генетический.Онтогенетический (организменный, уровень особей).Популяционно-видовой.Биоценотический.Биосферный.Критерий масштабности .Структурный (системный) анализ обнаруживает следующие уровни организации жизни:Биосферный - вся совокупность живых организмов Земли вместе с окружающей их природной средой.Уровень биогеоценозов - структуры, состоящие из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс – экосистему.Популяционно-видовой уровень - образуется свободно скрещивающимися между собой особями одного и того же вида, cовокупность особей одного вида.Организменный и органно-тканевый уровни - отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.Клеточный и субклеточный уровни - отражают особенности специализации клеток, а также внутриклеточные структуры. На этом уровне происходят процессы жизнедеятельности (обмен веществ, питание, дыхание, раздражимость и т. д.).Молекулярный уровень - отражает особенности химизма живого вещества, а также механизмы и процессы передачи генной информации. 5. Человек в системе природы. Специфика проявления биологического и социального в человеке.

Проблема взаимосвязи и взаимодействия человека и природы на протяжении всей человеческой истории была предметом пристального внимания людей. Самая суть человеческого способа существования в мире заключена во взаимодействии с природой, которая представляет собой всё в мире, что не создано руками человека, и всё то, с чем он так или иначе взаимодействует, т.е. вся совокупность условий существования человека и человечества составляет природу. Формы взаимодействия человеческого общества с природой достаточно много образны. Как правило, происходящие в обществе природные процессы приобретают социальную форму, а природные, прежде всего биологические, закономерности выступают как биосоциальные. Взаимоотношения общества и природы не являются чем-то статичным и неизменным. Они меняются по мере развития общества. За основу периодизации этапов взаимосвязи общества и природы, как правило, берётся характер освоения человеком природы, т.е. основное из отношений человека с окружающей средой. Первый из этапов взаимодействия общества и природы получил название биогенного периода, или присваивающего. Для него характерно то, что древние люди жили за счёт присвоения продуктов биосферы и оказывали обратное воздействие на природу главным образом непосредственно своими естественными органами и силами. По мере того как научно-техническая мощь человека неуклонно возрастает, становится сопоставимой с масштабами действия сил природы, люди получают всё больше поводов для того, чтобы убедиться в опасности неограниченного, бесконтрольного и необдуманного употребления этой мощи. Всё это побуждает общество искать новые формы взаимоотношений с природой. Основу перехода от техногенного к новому периоду - ноогенному или системно-преобразующему обосновал В.И.Вернадский, который видел её в том, что человечество, вооружённое научной мыслью, превращается в мощную силу развития нашей планеты. С захватом человеком биосферы растёт осмысленное осознание единства человека и природы, необходимости их коэволюции, т.е. сотрудничества.Обретение социальных качеств человеком происходит в процессе социализации: то, что присуще конкретной личности, есть результат освоения культурных ценностей, которые имеются в конкретном обществе. Одновременно это и выражение, воплощение внутренних возможностей личности.биологические факторы — прямохождение, развитие руки, большой и развитый мозг, способность к членораздельной речи;основные социальные факторы — труд и коллективная деятельность, мышление, язык и общение, нравственность.Под его биологическими особенностями понимают то, что сближает человека с животным (за исключением факторов антропогенеза, которые явились основанием для выделения человека из царства природы), — наследственные признаки; наличие инстинктов (самосохранения, полового и др.); эмоции; биологические потребности (дышать, питаться, спать и т.д.); сходные с другими млекопитающими физиологические особенности (наличие одинаковых внутренних органов, гормонов, постоянная температура тела); возможность использовать природные предметы; приспособление к окружающей среде, продолжение рода.Социальные особенности характерны исключительно для человека — способность производить орудия труда; членораздельная речь; язык; социальные потребности (общение, привязанность, дружба, любовь); духовные потребности (моральрелигияискусство); осознание своих потребностей; деятельность (трудовая, художественная и т.п.) как способность преобразовывать мир; сознание; способность мыслить; творчество; созидание; целеполагание.Человека нельзя сводить исключительно к общественным качествам, поскольку для его развития необходимы биологические предпосылки. Но нельзя свести его и к биологическим особенностям, так как личностью можно стать только в обществе. Биологическое и социальное нераздельно слито в человеке, что делает его особым биосоциальным существом. 6. Клетка как элементарная структурно-функциональная единица жизни. Формы клеточной (про- и эукариоты) и доклеточной (прионы, вироиды, вирусы) организации жизни на Земле.

Кле́тка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.Прокариоты— организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.Эукариотическая клетка.Эукариоты — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, Аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.Ви́рус— микроскопическая частица, состоящая из белков и нуклеиновых кислот и способная инфицировать клетки живых организмов. Вирусы являются облигатными паразитами — они не способны размножаться вне клетки. В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружен также вирус, поражающий другие вирусы[1]. Вирусы представляют собой молекулы нуклеиновых кислот (ДНК или РНК), заключённые в защитную белковую оболочку (капсид). Наличие капсида отличает вирусы от других инфекционных агентов, вироидов. Вирусы содержат только один тип нуклеиновой кислоты: либо ДНК , либо РНК. Ранее к вирусам также ошибочно относили прионы, однако впоследствии оказалось, что эти возбудители представляют собой особые белки и не содержат нуклеиновых кислот.Вирусные частицы (вирио́ны) представляют собой белковую капсулу — капсид, содержащую геном вируса, представленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров — белковых комплексов, состоящих в свою очередь из протомеров. Нуклеиновая кислота в комплексе с белками обозначается термином нуклеокапсид. Некоторые вирусы имеют также внешнюю липидную оболочку. Размеры различных вирусов колеблются от 20 (пикорнавирусы) до 500 (мимивирусы) и более нанометров. Вирионы часто имеют правильную геометрическую форму (икосаэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими её белками, и, следовательно, может быть построена из стандартных белков одного или нескольких видов, что позволяет вирусу экономить место в геноме.3.Клеточная теория. История и современное состояние. Значение ее для биологии и медицины.Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.Современная клеточная теория включает следующие основные положения:Клетка — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см.ниже).В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы"). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов — к митохондриям, хлоропластам, генам и хромосомам.Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).Клетки многоклеточных тотипотенты, т. е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке. 7. Клеточная теория. История и современное состояние. Значение ее для биологии и медицины.Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.Основные положения клеточной теории.Современная клеточная теория включает следующие основные положения:Клетка — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.Дополнительные положения клеточной теории:Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен:Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см.ниже).В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы"). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов — к митохондриям, хлоропластам, генам и хромосомам.Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).Клетки многоклеточных тотипотенты, т. е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.Современная клеточная теория. Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:1.Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т.п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, "одичавшими" генами.2.Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом - наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.3.Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.4.Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.5.Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии, симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, т.е. образуется оно в результате метаболизма клеток.6.Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма — клетки или «элементарные организмы».Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

. 8Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке. Нуклеиновые кислоты, их химический состав, биологическая роль.Нуклеи́новые кисло́ты (от лат. nucleus — ядро) — высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты — ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.Химические свойства:Нуклеиновые кислоты хорошо растворимы в воде, практически не растворимы в органических растворителях. Очень чувствительны к действию температуры и критических значений уровня pH. Молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора. Нуклеиновые кислоты фрагментируются ферментами — нуклеазами.Строение:Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.Дезоксирибонуклеи́новая кислота́ (ДНК) — один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков, нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции и принимают участие в биосинтезе белков (процессе трансляции).Рибонуклеи́новые кисло́ты (РНК) — нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания — аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах.Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК), принимают участие в процессе, называемом трансляцией. Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК. 9. Клеточный цикл, его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине. Онкогенез, теории онкогенеза.Клеточный цикл  — это периоды существования клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.Длительность клеточного цикла эукариот.Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих, земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.Фазы клеточного цикла эукариот:

Клеточный цикл эукариот состоит из двух периодов:Период клеточного роста, называемый «Интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.Периода клеточного деления, называемый «фаза М» (от слова mitosis — митоз).Интерфаза состоит из нескольких периодов:G1-фазы (от слова gap - промежуток), или фазы начального роста, во время которой идет синтез мРНК, белков, других клеточных компонентов;S-фазы (от слова synthesis - синтетическая), во время которой идет репликация ДНК клеточного ядра, а также происходит удвоение центриолей.G2-фазы, во время которой идет подготовка к митозу.У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G1 фаза. Такие клетки находятся в фазе покоя G0.Период клеточного деления (фаза М) включает две стадии:митоз (деление клеточного ядра).цитокинез (деление цитоплазмы).В свою очередь, митоз делится на пять стадий, In vivo эти шесть стадий образуют динамическую последовательность.Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.Регуляция клеточного цикла:Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков, как циклин-зависимые киназы и циклины. Клетки, находящиеся в G0 фазе, могут вступать в клеточный цикл при действии на них факторов роста. Разные факторы роста, такие как тромбоцитарный, эпидермальный, фактор роста нервов, связываясь со своими рецепторами, запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов и циклин-зависимых киназ. Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами. Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса. Киназы не активны без циклинов. На разных стадиях клеточного цикла синтезируются разные циклины. Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза, когда запускается весь каскад реакций фосфорилирования, катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами. 10. Химический состав и морфофункциональная характеристика хромосом. Метафазная и интерфазная хромосомы.Хромосо́мы' (др.-греч. χρῶμα — цвет и σῶμα — тело)  — хорошо окрашиваемые включения в ядре эукариотической клетки, которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия все чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.Хромосомы эукариот имеют сложное строение. Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков — H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.В интерфазе хроматин не конденсирован, но и в это время его нити представляют собой комплекс из ДНК и белков. Макромолекула ДНК обвивает октомеры (структуры, состоящую из восьми белковых глобул) гистоновых белков H2A, H2B, H3 и H4, образуя структуры, названные нуклеосомами. В целом вся конструкция несколько напоминает бусы. Последовательность из таких нуклеосом, соединённых белком H1, называется нуклеофиламентом (nucleofilament), или нуклеосомной нитью, диаметром около 10 нм.В ранней интерфазе (фаза G1) основу каждой из будущих хромосом составляет одна молекула ДНК. В фазе синтеза (S) молекулы ДНК вступают в процесс репликации и удваиваются. В поздней интерфазе (фаза G2) основа каждой из хромосом состоит из двух идентичных молекул ДНК, образовавшихся в результате репликации и соединённых между собой в районе центромерной последовательности.Перед началом деления клеточного ядра хромосома, представленная на этот момент цепочкой нуклеосом, начинает спирализовываться, или упаковываться, образуя при помощи белка H1 более толстую хроматиновую нить, или хроматиду, (chromatin fiber) диаметром 30 нм. В результате дальнейшей спирализации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, по-прежнему соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).Различают четыре типа строения хромосом:телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);субметацентрические (с плечами неравной длины, напоминающие по форме букву L);метацентрические (V-образные хромосомы, обладающие плечами равной длины).Центромера — участок хромосомы, характеризующийся специфической последовательностью нуклеотидов и структурой, играет важную роль в процессе деления клеточного ядра и в контроле экспрессии генов.Центромера принимает участие в соединении сестринских хроматид, формировании кинетохора, конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза. На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате — к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анэуплоидии, которая может иметь тяжелые последствия (например, синдром Дауна у человека, связанный с анэуплоидией (трисомией) по 21-й хромосоме).Спутники (сателлиты).Сателлит — это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.Зона ядрышка.Зоны ядрышка (организаторы ядрышка) — специальные участки, с которыми связано появление некоторых вторичных перетяжек.Хромонема.Хромонема — это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции, термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:паранемическую (элементы спирали легко разъединить);плектонемическую (нити плотно переплетаются);В метафазе движения хромосом почти полностью замирают, и кинетохоры хромосом располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку. Важно отметить, что они остаются в таком положении в течение довольно длительного времени. В это время в клетке происходят существенные перестройки, которые «разрешают» последующее расхождение хромосом. Обычно в связи с этим метафаза — наиболее удобное время для подсчета хромосомных чисел. 11. Основные химические компоненты клетки. Понятие об основных и микроэлементах.Каждая клетка содержит множество химических элементов, участвующих в различных химических реакциях. Химические процессы, протекающие в клетке — одно из основных условий её жизни, развития и функционирования. Одних химических элементов в клетке больше, других — меньше.Условно все элементы клетки можно разделить на три группы.Макроэлементы.К макроэлементам относят кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %), хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %). Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных келетов.Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевины, гуанина или мочевой кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления.Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.Фосфор — входит в состав АТФ, других нуклеотидов и нуклеиновых кислот (в виде остатков фосфорной кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза). Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессы осморегуляции (в том числе работу почек у человека) и создании буферной системы крови.Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы.Содержится в межклеточных веществах.Хлор — поддерживает электронейтральность клетки.Микроэлементы.К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк.Цинк — входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина.Медь — входит в состав окислительных ферментов, участвующих в синтезе цитохромов.Селен - участвует в регуляторных процессах организма.Ультрамикроэлементы.Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото, серебро оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще мало понятны.

12. Цитоплазматические мембраны. Химический состав, строение, функции.Кле́точная мембра́на (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов.Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.Функции биомембран:барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.Структура и состав биомембран.Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён. 13. Морфобиологическая характеристика основных органелл клетки (рибосомы, митохондрии, комплекс Гольджи, лизосомы, эндоплазматический ретикулум).Органоиды (от орган и греч. éidos — вид), или органеллы  — в цитологии постоянные структуры клеток. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки.Рибосома — важнейший органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100—200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией. В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.Митохондрия (от греч. μίτος — нить и χόνδρος — зёрнышко, крупинка) — органелла, имеющаяся во многих эукариотических клетках и производящая АТФ, используемый в клетке в качестве основного источника химической энергии. Эффективность работы митохондрий очень высока. Каждая митохондрия окружена оболочкой, состоящей из двух мембран; между ними — межмембранное пространство. Отграниченное внутренней мембраной пространство называется матриксом. В матриксе содержатся большая часть ферментов, участвующих в цикле Кребса, протекает окисление жирных кислот, располагаются митохондриальные ДНК, РНК и рибосомы. Внутренняя мембрана образует многочисленные гребневидные складки — кристы, существенно увеличивающие площадь ее поверхности. Наружная мембрана митохондрий имеет маленькие отверстия, образованные специальными белками, через которые могут проникать небольшие молекулы и ионы. Внутренняя мембрана таких отверстий не имеет; на ней, на стороне, обращенной к матриксу, располагаются особые молекулы АТФ-синтазы, состоящие из головки, ножки и основания. При прохождении через них протонов происходит синтез АТФ. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты дыхательной цепи. Наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.Аппарат Гольджи (комплекс Гольджи) — мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1898 году. Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок.Лизосома — (от греч. λύσις — растворяю и sōma — тело) клеточный органоид размером 0,2 — 0,4 мкм, один из видов везикул. Эти одномембранные органоиды. Один из признаков лизосом — наличие в них ряда ферментов (кислых гидролаз), способных расщеплять белки, углеводы, липиды и нуклеиновые кислоты. К числу ферментов лизосом относятся катепсины (тканевые протеазы), кислая рибонуклеаза, фосфолипаза и др. Кроме того, в лизосомах присутствуют ферменты, которые способны отщеплять от органических молекул сульфатные (cульфатазы) или фосфатные (кислая фосфатаза) группы.Функциями лизосом -переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток).аутофагия — уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки.автолиз — самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является паталогическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.Эндоплазматический ретикулум (ЭПР) (лат. reticulum — сеточка) или эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Нити, образующие эндоплазматический ретикулум имеют в поперечнике 0,05-0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев составляет около 50 ангстрем (5 нм, 0.005 мкм). Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.Трубочки, диаметр которых колеблется в пределах 0.1-0.3 мкм, заполнены гомогенным содержимым. Их функция — осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.Выделяют два вида ЭПР:гранулярный эндоплазматический ретикулум.агранулярный (гладкий) эндоплазматический ретикулум.Функции агранулярного эндоплазматического ретикулума:Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, нейтрализации ядов и запасании кальция. Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.

14. Принципы передачи сигналов в клетку. Понятие о G-белках.G-белки (англ. G proteins) — это семейство белков, относящихся к ГТФазам и функционирующих в качестве вторичных посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену GDP на GTP как молекулярный функциональный «выключатель» для регулировки клеточных процессов. G-белки делятся на две основных группы — гетеротримерные («большие») и «малые».Гетеротримерные G-белки — это белки с четвертичной структурой, состоящие из трёх субъединиц: альфа(α), бета (β) и гамма (γ). Малые G-белки — это белки из одной полипептидной цепи. Обе группы G-белков участвуют во внутриклеточной сигнализации.Сигнальные молекулы, включая большинство гормонов, как правило, не проникают внутрь клетки, а специфически взаимодействуют с ее наружной поверхностью, точнее, с рецепторами, локализованными во внешней клеточной мембране и представляющими собой интегральные мембранные белки, полипептидная цепь которых пронизывает толщу мембраны как минимум один раз и которые могут быть выделены только после ее разрушения, например, с помощью детергента.Молекулярные машины, обеспечивающие передачу сигнала от рецепторов к внутриклеточным мишеням, состоят, как правило, из нескольких белковых компонентов, совокупность которых обычно именуют каскадом передачи сигнала или просто каскадом. Помимо белковых посредников в передачу сигнала внутри клетки во многих случаях вовлекаются и относительно небольшие молекулы, служащие вторичными сигналами, - это вторичные посредники, или мессенджеры.У многоклеточных организмов выделяют два уровня восприятия и передачи сигналов (рис. 1, б ). Во-первых, это уровень целого организма, который получает информацию из окружающей среды с помощью органов чувств: глаз, ушей и т.д. В этом случае говорят о сенсорной рецепции, которая обеспечивает восприятия волновой энергии (света, звука, тепла), а в случае обоняния и вкусовых ощущений - химических сигналов. Во-вторых, это уровень общения клеток друг с другом в пределах многоклеточного организма. Клетки "разговаривают" между собой в основном на языке химических сигналов, которые представлены разнообразными первичными мессенджерами, среди них гормоны, нейротрансмиттеры, некоторые белковые факторы, отличные от гормонов. Добавим, что клеткам присуще "чувство локтя": их поведение может зависеть от присутствия соседей и регулироваться путем межклеточных взаимодействий, подобные эффекты также опосредуются интегрированными во внешнюю клеточную мембрану рецепторами.

15. Гаметогенез. Мейоз: цитологическая и цитогенетическая характеристики.

Гаметогенез или предзародышевое развитие — процесс созревания половых клеток, или гамет. Поскольку в ходе гаметогенеза специализация яйцеклеток и спермиев происходит в разных направлениях, обычно выделяют овогенез и сперматогенез соответственно.Мейоз (или редукционное деление клетки) — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза).С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:Фаза лептотены или лептонемы — конденсация ДНК с образованием хромосом в виде тонких нитей.Зиготена или зигонема — коньюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.Пахитена или пахинема — кроссинговер (перекрест) обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой.Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений).

16. Оплодотворение. Партеногенез (формы, распространенность в природе).Оплодотворение - слияние яйцеклетки и спермотозоида. В результате оплодотворения получается зигота.Процесс оплодотворения происходит в несколько этапов:1)проникновение сперматозоида в яйцо2)слияние гаплоидных ядер обоих гамет с образованием диплоидной клетки зиготы3)активизация её к дроблению и дальнейшему развитию.Неоплодотворённая яйцеклетка покрыта несколькими защитными оболочками, предохраняющими ей от неблагоприятных условий. Сперматозоид активно передвигаются в жидкости к яйцеклетке при помощи жгутика(хвостика). Когда он достигает яйцеклетки, то начинает с помощью особых ферментов "сверлить" оболочку яйцеклетки. После того, как оно проникает в яйцеклетку, её оболочка приобретает свойства, которые препядствуют доступу других сперматозойдов. Это обеспечивает слияние одного сперматозоида с ядром яйцеклетки. В результате слияния образуется зигота(оплодотворённая яйцеклетка) содержащая диплоидный набор хромосом.Дробление.после нескольких часов после оплодотворения наступает первая стадия зародышевого развития, называемая дрорблением, в результате которого зигота делится митозом на две клетки. Затем каждая клетка опять делится также на две клетки и получается зародыш, состоящий из 4, 8,16,32 и т.д. клеток.Когда клеток становится очень много, образуется бластула - сфера, пустая внутри. Пространство внутри бластулы называют бластоцель.Вскоре после бластулы наступает стадия гаструлы. Участок бластулы впячивается внутрь и образуется двухслоиный мешок, наружный его слой называют эктодермой, а внутренний энтодермой.Деление клеток продолжается и наступает следующая стадия - нейрула. На стадии нейрулы из эктодермы развивается нервная пластинка, а затем нервная трубка (из неё впоследствии произойдут головной и спинной мозг) остальная эктодерма даёт начало наружному слою (кожный покров, органы зрения и слуха) одновременно энтодерма образует трубку(кишечник, лёгкие, печень, поджелудочная железа). Мезодерма даёт начало хорде, мышцам, почкам, хрящевому и костному скелету, а также кровеносным сосудам.Партеногенез (от греч. παρθενος — девственница и γενεσις — рождение) — девственное размножение, одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются без оплодотворения. Партеногенез — половое, но однополое размножение — возник в процессе эволюции организмов у раздельнополых форм. В тех случаях, когда партеногенетические виды представлены (всегда или периодически) только самками, одно из главных биологических преимуществ партеногенеза заключается в ускорении темпа размножения вида, так как все особи подобных видов способны оставить потомство. В тех случаях, когда из оплодотворённых яйцеклеток развиваются самки, а из неоплодотворённых — самцы, партеногенез способствует регулированию численных соотношений полов (например, у пчёл). Часто партеногенетические виды и расы являются полиплоидными и возникают в результате отдалённой гибридизации, обнаруживая в связи с этим гетерозис и высокую жизнеспособность. Партеногенез следует относить к половому размножению и следует отличать от бесполого размножения, которое осуществляется всегда при помощи соматических органов и клеток (размножение делением, почкованием и т. п.).Партеногенез у протистов.Протисты размножаются митозом.Партеногенез у членистоногих.Способность к партеногенезу имеют тихоходки (возможно они не членистоногие) ,тля ,балянус и многие другие.Партеногенез у позвоночных.Партеногенез редок у позвоночных и встречается примерно у 70 видов, что составляет 0,1% всех позвоночных животных. Например, несколько видов ящериц, в естественных условиях размножающихся партеногенезом (Даревскиа), комодские вараны. Партеногенетические популяции также найдены и у некоторые видов рыб, земноводных, птиц. Случаи однополого размножения пока не известны только среди млекопитающих.Партеногенез у комодских варанов возможен потому, что овогенез сопровождается развитием полоцита (полярного тельца), содержащего удвоенную копию ДНК яйца; полоцит при этом не погибает и выступает в качестве спермы, превращая яйцеклетку в эмбрион[1].Партеногенез у позвоночных можно вызвать искусственно. Так, в 2002 году научному коллективу под руководством J.Cibelli с помощью искусственного партеногенеза удалось получить несколько зародышей макак[2], а в 2004 году в Японии создали мышь без участия самца.Партеногенез у растений.Аналогичный процесс у растений называется апомиксис. 17. Зависимость между типами яйцеклеток и характером дробления зиготы.

Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных. При этом масса зародыша и его объем не меняются, оставаясь такими же, как и в начале дробления. Яйцо разделяется на все более мелкие клетки — бластомеры. Характерная особенность дробления — ведущая регуляторная роль цитоплазмы в развитии. Характер дробления зависит от количества желтка и его расположения в яйце.На основе ряда существенных характеристик (полнота, равномерность и симметрия деления) выделяют ряд типов дробления. Типы дробления во многом определяются распределением веществ (в том числе, желтка) по цитоплазме яйца и характером межклеточных контактов, которые устанавливаются между бластомерами.Дробление может быть полным (голобластическим) или неполным (меробластическим), равномерным (бластомеры более-менее одинаковы по величине) и неравномерным (бластомеры не одинаковы по величине, выделяются две — три размерные группы, обычно называемые макро- и микромерами), наконец по характеру симметрии различают радиальное, спиральное, различные варианты билатеризованных и анархическое дробление. В каждом из этих типов выделяют ряд вариантов.Голобластическое дробление.Плоскости дробления разделяют яйцо полностью. Выделяют полное равномерное дробление, при котором бластомеры не различаются по размерам (такой тип дробления характерен для гомолецитальных яиц), и полное неравномерное дробление, при котором бластомеры могут существенно различаться по размерам. Такой тип дробления характерен для умеренно телолецитальных яиц.Меробластическое дробление.Дискоидальное.ограничено относительно небольшим участком у анимального полюса,плоскости дробления не проходят через всё яйцо и не захватывают желток.Такой тип дробления типичен для телолецитальных яиц богатых желтком (птицы, рептилии). Такое дробление называют также дискоидальным, так как в результате дробления на анимальном полюсе образуется небольшой диск клеток (бластодиск).Поверхностное:ядро зиготы делится в центральном островке цитоплазмы,получающиеся клетки перемещаются на поверхность яйца, образуя поверхностный слой клеток (бластодерму) вокруг лежащего в центре желтка.Такой тип дробления наблюдается у членистоногих.По типу симметрии дробящегося яйца:Радиальное.Ось яйца является осью радиальной симметрии. Типично для ланцетника, осетровых, амфибий, иглокожих, круглоротых.Спиральное.В анафазе бластомеры разворачиваются. Отличается лево-правой дисимметрией (энантиоморфизм) уже на стадии четырёх (иногда двух) бластомеров. Типично для некоторых моллюсков, кольчатых и ресничных червей.Билатеральное.Имеется 1 плоскость симметрии. Типично для аскариды.Анархическое.Бластомеры слабо связаны между собой, сначала образуют цепочки. Типично для кишечнополостных. 18. Гаструляция. Типы гаструляции. Гисто- и органогенез.

Гаструляция — сложный процесс химических и морфогенетических изменений сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки (эктодерма, мезодерма, и энтодерма) — источники зачатков тканей и органов.Эктодерма (от экто… и дерма) — наружный зародышевый листок эмбриона (см. Эмбрион) на ранних стадиях развития. Из эктодермы образуются кожный эпителий, нервная система, органы чувств, передний и задний отделы кишечника.Энтодерма (от энто… и дерма), или энтобласт, — внутренний зародышевый листок многоклеточных животных.У первичноротых энтодерма выстилает полость первичной кишки, из неё образуется средняя кишка и все её добавочные железы.У вторичноротых образует внутренний слой кишечной трубки.У позвоночных из энтодермы развивается слизистая оболочка всего кишечника и связанные с ним железы (печень, поджелудочная железа и др.).У рыб, кроме того — плавательный пузырь и внутренние жабры, а у высших позвоночных — лёгкие.Энтодерма и ее производные у хордовых животных оказывают индукционное влияние на развитие хордомезодермы и некоторых производных эктодермы (рот, анус, жаберные щели, наружные жабры) и, в свою очередь для нормального развития нуждаются во влияниях, исходящих от различных экто- и мезодермальных закладок.Мезодерма — (от мезо и дерма), или мезобласт, средний зародышевый листок у многоклеточных животных (кроме губок и кишечнополостных). Располагается между эктодермой и энтодермой. У разных групп животных образуется различными способами. У плоских червей и немертин полоски мезодермы дают соединительную ткань, заполняющую пространство между внутренними органами, у кольчатых червей и большинства других беспозвоночных полоски мезодермы расчленяются на парные сомиты с вторичной полостью — целомом. У позвоночных в период нейруляции с боков от зачатка хорды мезодерма расчленяется на спинные (первичные) сегменты — сомиты, нефротомы и несегментированную брюшную мезодерму — боковые пластинки. Между двумя листками каждой из них образуется целом.Из мезодермы впоследствии формируются хорда, хрящевой и костный скелет, мышцы, почки, кровеносные сосуды.Мезодерма и её производные оказывают индуцирующее влияние на развитие производных эктодермы и энтодермы и в свою очередь испытывают индуцирующее влияние с их стороны.Термин "многоклеточный организм" подразумевает не только то, что этот организм состоит более, чем из одной клетки, но и глубокую степень физиологической и, как следствие, морфологической интеграции и дифференциации. У животных такая дифференциация проявляется в первичном разделении их клеток на внешний и внутренний слои с разными функциями: внешний слой связан с двигательной, а внутренний с пищеварительной функцией. Эта двуслойность в процессе эмбрионального развития возникает на стадии гаструляции. Гаструляция у разных животных протекает по разному. Отчасти тип гаструляции зависит от типа дробления и вида образующейся бластулы."Классический" вариант гаструляции - это гаструляция путем инвагинации. В этом случае на поверхности бластулы (обычно - на вегетативном полюсе) образуется впячивание. Отверстие, ведущее из этого впячивания наружу называется бластопор, а "крыша" и стенки впячивания образуют впоследствии первичную кишку. Полость первичной кишки называется гастроцель. Однако этот вариант - далеко не единственный. Другой путь - гаструляция путем иммиграции. В этом случае клетки стенки бластулы принимают амебоидную форму и поодиночке "заползают" внутрь полости бластулы. За счет изменения формы оставшихся клеток дырок не образуется. Постепенно полость бластулы заполняется рыхлой неполяризованной тканью - паренхимой. Иммиграция бывает униполярной (клетки заползают внутрь в одном месте - обычно на вегетативном полюсе) и мультиполярной (заползание происходит со всех сторон). Следующий способ - деляминация. Бластомеры могут просто поделиться по касательной к поверхности бластулы, и один слой клеток превратится в два. Нередко несколько этих способов сочетаются (например, иммиграция и деляминация). После завершения гаструляции начинается следующий этап - органогенез. Он протекает уже очень по-разному у разных типов животных. 19. Роль наследственности и среды в онтогенезе. Критические периоды развития. Тератогенные факторы.Онтогенез, или индивидуальное развитие организма, осуществ­ляется на основе наследственной программы, получаемой через вступившие в оплодотворение половые клетки родителей. В ходе реализации наследственной информации в процессе онтогенеза у организма формируются видовые и индивидуальные морфологические, физиологические и биохимические свойства, иными словами — фенотип. Ведущая роль в формировании фенотипа принадлежит наслед­ственной информации, заключенной в генотипе организма. При этом простые признаки развиваются как результат определенного типа взаимодействия соответствующих аллельных генов.Наряду с этим результат реализации наследственной программы, заключенной в генотипе особи, в значительной мере зависит от условий, в которых осуществляется этот процесс. Факторы внешней по отношению к генотипу среды могут способствовать или препят­ствовать фенотипическому проявлению генетической информации, усиливать или ослаблять степень такого проявления.Совокупность внутриорганизменных факторов, влияющих на реализацию наследственной про­граммы, обозначают как среду 1-го порядка. Особенно большое влияние на функцию генотипа факторы этой среды оказывают в период активных формообразовательных процессов, прежде всего в эмбриогенезе. С другой стороны, выделяют понятие окружающей среды, или среды 2-го порядка, как совокупности внешних по отношению к организму факторов.Периоды наибольшей чувствительности к повреждающему действию разнообразных факторов получили название критических, а повреждающие факторы — те­ратогенных.Причиной нарушения развития зачатка является большая чувствительность его в данный момент к действию патогенного фактора, чем у других органов.П.Г. Светлов установил два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процес­сом имплантации зародыша, второй — с формированием плаценты. Имплантация приходится на первую фазу гаструляции, у человека — на конец 1-й —начало 2-й недели. Второй критический период продолжается с 3-й по 6-ю неделю. По другим источникам, он включает в себя также 7-ю и 8-ю недели. В это время идут процессы нейруляции и начальные этапы органогенеза. 20. Постнатальный онтогенез и его периоды. Взаимодействие социального и биологического в развитии человека.

Постнатальный (постэмбриональный) онтогенез начинается с момента рождения или выхода организма из яйцевых оболочек и продолжается вплоть до смерти живого организма. Этот период сопровождается ростом. Он может быть ограничен определенным сроком или длиться в течение всей жизни.Различают два основных типа постэмбрионального развития:-прямое развитие;- развитие с превращением или метаморфозом.В случае прямого развития молодая особь мало, чем отличается от взрослого организма и ведет тот же образ жизни, что и взрослые (наземные позвоночные).При развитии с метаморфозом из яйца появляется личинка, порой внешне совершенно не похожая и даже отличающаяся по ряду анатомических признаков от взрослой особи. Часто личинка ведет иной образ жизни по сравнению с взрослыми организмами (бабочки и их личинки гусеницы). Она питается, растет и на определенном этапе превращается во взрослую особь, этот процесс сопровождается весьма глубокими морфологическими и физиологическими преобразованиями. В большинстве случаев организмы не способны размножаться на личиночной стадии. Аксолотли — личинки хвостатых земноводных амбистом — способны размножаться, при этом дальнейший метаморфоз может и не осуществляться вовсе. Способность организмов размножаться на личиночной стадии называется неотенией. 21. Биологические и социальные аспекты старения и смерти. Проблема долголетия. Понятие о геронтологии и гериатрии.Старение представляет собой всеобъемлющий процесс, охваты­вающий все уровни структурной организации особи —от макромолекулярного до организменного.Ряд наблюдений легли в основу достаточно распространенной точки зрения о наследуемости продолжительности жизни и, следо­вательно, наличии генетического контроля или даже особой генети­ческой программы старения.Представ­ление о величине наследуемости продолжительности жизни полу­чают, определяя коэффициент наследуемости. Результаты оценки степени генетического контроля старения путем расчета коэффициента наследуемости долгожительства ука­зывают лишь на отсутствие специальной генетической программы старения.При отсутствии специальных генов или целой программы, прямо определяющих развитие старческих признаков, процесс старения находится тем не менее под генетическим конт­ролем путем изменения его скорости. Называют разные пути такого контроля. Во-первых, это плейотропное действие, свойственное многим генам. Во-вторых, со временем в генотипах соматических клеток, особенно в области регуляторных нуклеотидных последовательно­стей,накапливаются ошибки (мутации). Следствием этого является нарастающее с возрастом нарушение работы внутриклеточных ме­ханизмов, процессов репликации, репарации, транскрипции ДНК. В-третьих, генетические влияния на скорость старения могут быть связаны с генами предрасположенности к хроническим заболе­ваниям, таким, как ишемическая болезнь сердца, атеросклероз сосудов головного мозга, гипертония, наследуемым по полигенному типу.В ис­следованиях зависимости скорости старения от условий жизни, проводимых на лабораторных животных,используют следующие признаки: 1) состояние белков соединительной ткани коллагена и эластина; 2) показатели сердечной деятельности и кровообращения; 3) содержание пигмента липофусцина в клетках нервной системы и сердца; 4) показатели произвольной двигательной активности; 5) способность к обучению.Влияние социально-экономических условий на длительность жиз­ни может быть оценено путем сравнения названного показателя для одной и той же популяции (например, население страны), но в разные исторические периоды или же путем сопоставления продол­жительности жизни в двух популяциях, различающихся по жизнен­ному уровню и сосуществующих в одно и то же историческое время.Геронтология — это наука, изучающая биологические механизмы и процессы, обуславливающие и сопровождающие старение живых существ, а также способы замедления старения и увеличения продолжительности жизни.Гериатрия — медицинская дисциплина, занимающаяся изучением особенностей заболеваний у лиц пожилого и старческого возраста и их лечением. 22. Регенерация как свойство живого к самообновлению и восстановлению. Физиологическая регенерация, ее биологическое значение.Регенерация — процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Физиологическая регенерация - восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма.Репаративная регенерация — восстановление структур после травмы или действия других повреждающих факторов. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии.Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Поддерживается структурный гомеостаз, обеспечивается возможность постоянного выполнения органами их функций. Является проявлением свойства жизни, как самообновление (обновление эпидермиса кожи, эпителия слизистой кишечника). 23. Репаративная регенерация и способы ее осуществления. Проявление репаративной способности в филогенезе. Соматический эмбриогенез.Репаративная (от лат. reparatio — восстановление) регенерация наступает после повреждения ткани или органа. Она очень разнообразна по факторам, вызывающим повреждения, по объемам повреждения, по способам восстановления. Механическая травма, например оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание, другие болезнетворные агенты,— все это повреждающие факторы. Наиболее широко изучена регенерация после механической травмы.Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.Образование соматических зародышей в культуре in vitro может проходить прямым или непрямым путем. В первом случае эмбриоид образуется из клеток экспланта, минуя стадию каллуса. Такое явление характерно для цитрусовых культур, у которых ткани нуцеллуса in vivo дают начало нуцеллярным зародышам. Нуцеллярные зародыши , образовавшиеся в результате адвентивной полиэмбрионии , несут признаки только материнского растения. Образование эмбриоидов у цитрусовых может быть вызвано и в культуре in vitro после культивирования нуцеллуса на питательной среде, что может использоваться для их клонального микроразмножения.Непрямой соматический эмбриогенез включает несколько этапов:1.Стимуляция образования каллуса из экспланта на среде, содержащей высокие концентрации ауксина). При этом происходит дедифференциация клеток – инициалей, из которых образуются предзародыши.2. Перенос каллуса на среду с пониженной концентрацией ауксинов либо их полным отсутствием. На этом этапе из предзародышей в результате эмбриогенеза формируются биполярные зародыши.3.Прорастание эмбриоидов и развитие растений. Условия прорастания зависит от особенностей культивируемых видов. 24. Проявление репаративной способности у человека. Биологическое и медицинское значение проблемы регенерации.Регенера́ция — способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток). У протистов регенерация может проявляться в восстановлении утраченных органоидов или частей клетки.Регенерацией называется восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждениями или утратой, называют физиологической.В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающиесменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.У человека хорошо регенерирует эпидермис, к регенерации способны также такие его производные, как волосы и ногти. Способностью к регенерации обладает также костная ткань (кости срастаются после переломов). С утратой части печени (до 75 %), щитовидной или поджелудочной железы клетки оставшихся фрагментов начинают усиленно делиться и восстанавливают первоначальные размеры органа. Нервные клетки также обладают такой способностью. При определённых условиях могут регенерировать кончики пальцев[1]. В связи с обнаружением на регенерирующих тканях слабых электрических напряжений можно предположить, что слабые электрофорезные токи ускоряют регенерацию. 25. Понятие о гомеостазе. Генетические и клеточные основы гомеостатических реакций организма.Гомеоста́з (др.-греч. ὁμοιοστάσις от ὁμοιος — одинаковый, подобный и στάσις — стояние, неподвижность) — саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды.Гомеостаз популяции — способность популяции поддерживать определённую численность своих особей длительное время.Гомеостатические системы обладают следующими свойствами:Нестабильность системы: тестирует, каким образом ей лучше приспособиться.Стремление к равновесию: вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.Непредсказуемость: результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.Примеры гомеостаза у млекопитающих:Регуляция количества минеральных веществ и воды в теле — осморегуляция. Осуществляется в почках.Удаление отходов процесса обмена веществ — выделение. Осуществляется экзокринными органами — почками, лёгкимипотовыми железами и желудочно-кишечным трактом.Регуляция температуры тела. Понижение температуры через потоотделение, разнообразные терморегулирующие реакции.Регуляция уровня глюкозы в крови. В основном осуществляется печеньюинсулином и глюкагоном, выделяемыми поджелудочной железой. 26. Проблема трансплантации органов и тканей. Разновидности трансплантации. Тканевая несовместимость и пути ее преодоления.Трансплантация (от лат. transplantare – пересаживать) –  процесс замены поврежденных или утраченных органов путем пересадки таких же органов, взятых из здоровых организмов того же вида.Различают три вида трансплантации: аутотрансплантацию –  трансплантацию в пределах одного организма, алло- или гомотрансплантацию – трансплантацию в пределах одного вида и гетеро-  или ксенотрансплантация – трансплантацию между различными видами.В области трансплантологии существует ряд этико-правовых проблем: проблемы, связанные с ключевыми этапами технологии трансплантации - констатацией смерти человека, изъятием (забор) органов и/ или тканей, распределением органов и/ или тканей  между реципиентами, коммерциализацией трансплантологии.Проблема забора органов и(или) тканей у донора рассматривается в зависимости от того, является ли донор живым или мертвым человеком.Пересадка органа от живого донора сопряжена с причинением вреда его здоровью. В трансплантологии соблюдение этического принципа «не навреди» в случаях, когда донором является живой человек, оказывается практически невозможным. Врач оказывается перед противоречием между моральными принципами «не навреди» и «твори благо». С одной стороны, пересадка органа (например, почки) – это спасение жизни человеку (реципиенту), т.е. является благом для него. С другой стороны, здоровью живого донора данного органа причиняется значительный  вред, т.е. нарушается принцип «не навреди», причиняется зло.Проблема дефицита донорских органов решается различными путями: идет пропаганда пожертвования органов после смерти человека с прижизненным оформлением согласия на это, создаются искусственные органы, разрабатываются методы получения донорских органов от животных, путем культивирования соматических стволовых клеток с последующим получением определенных типов тканей, создания искусственных органов на основе достижений биоэлектроники и нанотехнологий. Создание и использование искусственных органов – первое направление в трансплантологии, в котором начала решаться проблема дефицита донорских органов и других проблем, связанных с забором органов у человека, как живого, так и мертвого.Проблема распределения донорских органов актуальна во всем мире и существует как проблема дефицита донорских органов. Распределение донорских органов в соответствии с принципом справедливости решается путем включения реципиентов в трансплантологическую программу, основанную на практике «листов ожидания». 27. Понятие о клинической и биологической смерти. Реанимация. Клини́ческая смерть — обратимый этап умирания, переходный период между жизнью и смертью. На данном этапе прекращается деятельность сердца и дыхания, полностью исчезают все внешние признаки жизнедеятельности организма. При этом гипоксия(кислородное голодание) не вызывает необратимых изменений в наиболее к ней чувствительных органах и системах. Данный период терминального состояния, за исключением редких и казуистических случаев, в среднем продолжается не более 3-4 минут, максимум 5-6 минут (при исходно пониженной или нормальной температуре тела).К признакам клинической смерти относятся: комаапноэасистолия. Данная триада касается раннего периода клинической смерти (когда с момента асистолии прошло несколько минут), и не распространяется на те случаи, когда уже имеются отчетливые признаки биологической смерти. Чем короче период между констатацией клинической смерти и началом проведения реанимационных мероприятий, тем больше шансов на жизнь у больного, поэтому диагностика и лечение проводится параллельно.Кома диагностируется на основании отсутствия сознания и по расширенным зрачкам, не реагирующим на свет.Апноэ регистрируется визуально, по отсутствию дыхательных движений грудной клетки.Асистолия регистрируется по отсутствию пульса на 2 сонных артериях. Перед определением пульса рекомендуется провести пострадавшему искусственную вентиляцию лёгких.Биологи́ческая смерть (или истинная смерть) представляет собой необратимое прекращение физиологических процессов в клетках и тканях. См. Смерть. Под необратимым прекращением обычно понимается «необратимое в рамках современных медицинских технологий» прекращение процессов. Со временем меняются возможности медицины по реанимации умерших пациентов, вследствие чего граница смерти отодвигается в будущее. С точки зрения учёных — сторонников крионики и наномедицины, большинство умирающих сейчас людей могут быть в будущем оживлены, если сейчас сохранить структуру их мозга.К ранним признакам биологической смерти относятся:-Отсутствие реакции глаза на раздражение (надавливание).-Помутнение роговицы, образование треугольников высыхания (пятен Лярше).-Появление симптома «кошачьего глаза»

28. История становления эволюционной идеи. Сущность представлений Ч.Дарвина о механизме биологической эволюции. Синтетическая теория эволюции.Теория Дарвина представляет собой целостное чение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых является доказательство эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса. Сущность эволюционного учения заключается в следующих основных положениях:1) Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.2) Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.3) В основе преобразования видов в природе лежат такие свойства организмов, как изменчивость и наследственность, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.4) Результатом эволюции вляется приспособленность организмов к условиям их обитания и многообразие видов в природе.

29. Понятие о биологическом виде. Критерии вида. Реальность биологического вида.Вид (лат. species) — основная структурная единица биологической систематики живых организмов (животных, растений и микроорганизмов)[1] —таксономическая, систематическая единица, группа особей с общими морфофизиологическими, биохимическими и поведенческими признаками, способная к взаимному скрещиванию, дающему в ряду поколений плодовитое потомство, закономерно распространённая в пределах определённогоареала и сходно изменяющаяся под влиянием факторов внешней среды. Один вид можно отделить от другого по пяти основным признакам:-Морфологический критерий позволяет различать разные виды по внешним и внутренним признакам.-Физиолого-биохимический критерий фиксирует неодинаковость химических свойств и физиологических процессов разных видов.-Географический критерий свидетельствует, что каждый вид обладает своим ареалом.-Экологический позволяет различать виды по комплексу абиотических и биологических условий, в которых они сформировались, приспособились к жизни.-Репродуктивный критерий обуславливает репродуктивную изоляцию вида от других, даже близкородственных.Нередко выделяют и другие критерии вида: цитологический (хромосомный) и другие.Каждый вид представляет собой генетически замкнутую систему, репродуктивную изолированную от других видов.В связи с неодинаковыми условиями среды особи одного вида в пределах ареала распадаются на более мелкие единицы —популяции. Реально вид существует именно в виде популяций.Виды бывают монотипическими — со слабо дифференцированной внутренней структурой, они характерны для эндемиков. Политипические виды отличаются сложной внутривидовой структурой.Внутри видов могут быть выделены подвиды — географически или экологически обособленные части вида, особи которых под влиянием факторов среды в процессе эволюции приобрели устойчивые морфофизиологические особенности, отличающие их от других частей этого вида. В природе особи разных подвидов одного вида могут свободно скрещиваться и давать плодовитое потомство. Концепции вида.Вид, как таксон является базовой структурной единицей любой системы органического мира, от определения границ оторого зависит структура всей таксономической иерархии. При этом проблема вида, ввиду наличия у этого таксона ряда уникальных свойств, может рассматриваться как самостоятельная область биологической науки.В современной науке пока нет единого понимания биологической сущности вида. Наиболее распространены 7 концепций:типологическая,номиналистическая,биологическая,хеннигова,эволюционная,филогенетические концепции Б. Мишлера — Э. Териота и К. Вилера — Н. Плетника.

30. Элементарные эволюционные факторы: мутационный процесс, популяционные волны, изоляция, естественный отбор. Их взаимодействие в процессе эволюции.1.Изменчивость-Мутационная изменчивость – основная форма; в виде генных, хромосомных и геномных мутаций. Хотя мутации происходят редко (вероятность генной мутации10-6 ), но в целом накапливается значительное количество. Большинство накапливающихся мутаций – рецессивные (доминантные тут же проявляются и подвергаются жесткому отбору), при этом популяция остается генетически однородной – скрытый резерв наследственной изменчивости. Доля полезных мутаций мала (1 на 109 вредных), но за период существования вида накапливаются значительные количество, что может привести к образованию нового вида, более приспособленного к новым условиям существования.-Комбинативная изменчивость – следствие механизмов мейоза (кроссинговер, случайное расхождение гомологичных хромосом, случайное сочетание гамет), большое разнообразие генотипов и фенотипов – исходный материал для естественного отбора.2. Естественный отбор – избирательное (дифференциальное) воспроизведение определенных генотипов (выживание наиболее приспособленных), функционирует при наличии 2 факторов: интенсивного размножения особей и борьбы за существование.Интенсивность размножения – рождается намного больше особей, чем может выжить Гибель потомства – результат борьбы за существование.Различают 3 вида борьбы за существование:-межвидовая (между хищниками-плотоядными и травоядными, травоядными и растениями, птицами и насекомыми, между культурными растениями и сорняками, между микроорганизмами разных видов и т.д.);- внутривидовая (между особями одного вида – рыжие тараканы вытесняют черных, серая крыса – черную, конкуренция за места гнездования, самцов – за самку, каннибализм у рыб);- с неблагоприятными условиями внешней среды (с засухой, заморозками, переувлажнением - растения, недостаток кислорода в воде – рыбы, резкие колебания температуры – возникновение теплокровности и шерстного покрова).Кто выживает в этой борьбе? Те виды, которые наиболее приспособлены к конкретным определенным условиям окружающей среды. Следовательно, эволюционный процесс носит приспособительный характер, а целесообразность обусловлена взаимосвязью и соответствием всех органов в организме условиям существования в определенных условиях.Примеры приспособлений: внешний вид – покровительственная окраска, маскировка, предупреждающая окраска, мимикрия.В зависимости от направленности и результата различают следующие формы естественного отбора:Направленный (движущий) – вызывает прогрессивное или направленное в одну строну изменение генетического состава популяции, проявляется в сдвиге средних значений отбираемых признаков в сторону их усиления (ослабления), характерен для популяций в процессе приспособления к новой среде (при медленно изменяющихся условиях внешней среды). Этот принцип используют при искусственном отборе. Пример: индустриальный меланизм бабочек.Стабилизирующий отбор – сохраняет в популяции средний вариант фенотипа (признака), устраняет из репродуктивного процесса фенотипы, отклоняющиеся от нормы. Наиболее распространенная форма, характерна для постоянных условий окружающей среды.Дизруптивный (разрывающий) отбор – сохраняет крайние формы, направлен против «средних» особей.Дарвин: «Естественный отбор ежедневно, ежечасно расследует по всему свету мельчайшие изменения, отбрасывая дурные, сохраняя и слагая хорошие, работая неслышно, невидимо, где бы и когда бы только ни представился к тому случай, над усовершенствованием каждого органического существа.2 Изоляция – возникновение любых барьеров, препятствующих скрещиванию организмов, связана с другими факторами. Различают:o   Географическую  (пространственную) – разрыв единого ареала водными или наземными преградами, обособление отдельных популяций, в каждой свои мутации, изменчивость, отбор, изменение генотипа, изменение фенотипа;o   Биологическую (репродуктивную) из-за несовпадения сезонов размножения, особенностей ритуала ухаживания, различия в строении органов размножения, несовместимость гамет.3 Популяционные волны периодические колебания численности организмов в природных популяциях. Причины различны: соотношение численности хищников и травоядных, деятельность человека (размножение кроликов в Австралии, колорадского жука и т.д.). Рост численности сопровождается расширением территории, возможно слияние  с другими популяциями, выселение за пределы ареала, где могут быть другие условия существования. При спаде численности распад крупных популяций, изоляция отдельных групп, в которых возможно сохранение редких мутационных аллелей, приводящих к возникновению новых видов.4 Дрейф генов (генетико-автоматические процессы). Когда особей в популяции мало, возможны случайные отклонения от общих закономерностей наследственности и изменчивости, которые могут привести к утрате или закреплению признака вне его связи  с приспособительной ценностью. 31. Популяционные волны и их роль в эволюционном процессе (на любом примере).  резкие колебания численности особей популяции вследствие ес­тественных причин. Впервые на это явление обратил внимание С. С. Четвериков, им же был введен данный термин (1905). У бы­стро размножающихся видов наблюдается периодическое чере­дование быстрых подъемов численности и резких спадов. На­пример, численность мышевидных грызунов за четыре года возрастает от ничтожной до максимальной, затем падает почти до нуля и снова начинает увеличиваться. Важную роль в данном случае играют хищники, численность которых колеблется про­порционально численности грызунов. Важной причиной популяционных волн является также постепенное истощение пищевых  ресурсов в связи с ростом популяции и последующее их восстановление после снижения численности популяции. Причи­нами резких непериодических снижений численности популя­ции могут также быть стихийные бедствия: засухи, пожары, наводнения. Каким бы ни был механизм популяционных волн, ясно, что на численность популяции могут влиять одновременно многие факторы. Популяционные волны играют большую роль в ходе микроэволюции. С возрастанием численности популяции увеличивается вероятность появления новых мутаций и их ком­бинаций. Если в среднем один мутант появляется на 10 тыс. осо­бей, то при возрастании численности популяции в 100 раз общее число мутантов увеличится во столько же раз. После спада вол­ны численности генофонд популяции может уже оказаться иным: часть мутаций может случайно исчезнуть из-за гибели несущих их особей, а частота встречаемости других мутаций мо­жет повыситься. Таким образом, популяционные волны сами по себе не вызывают наследственную изменчивость, а только спо­собствуют изменению частот аллелей и генотипов; они являют­ся поставщиком исходного материала для действия естественно­го отбора. Они нарушают закон Харди - Вайнберга и изменяют частоты аллелей случайным образом. В соответствии с современной теорией эволюции, историческое развитие биологических организмов определяется рядом эволюционных факторов (мутационными процессами, популяционными волнами, изоляцией, естественным отбором и другими. 32. Популяционная структура вида. Понятие о популяции, ее характеристика. Закон Харди-Вайнберга - определение, математическое выражение. В природе практически не существует видов, которые были бы повсеместно распространены. Обычно каждый вид имеет свою область распространения - ареал, границы которого определяются границами пригодных для данного вида условий обитания. Космополитами - видами, обитающими повсеместно - являются прежде всего человек, сумевший освободиться из-под влияния окружающей среды, и (с определенной долей условности) некоторые обитающие совместно с ним животные, такие как серая крыса и рыжий таракан. Границы ареалов видов со временем изменяются. Как правило, это связано с изменением условий существования, а также с адаптацией видов к новой среде обитания. В настоящее время ареалы многих видов меняются под влиянием хозяйственной деятельности человека. При этом ареал может сокращаться, как у соболя, или расширяться, как у зайца-русака. Условия среды определяют не только границы ареала, но и закономерности размещения особей в пределах этих границ. Как правило, внутри своего ареала животные, растения грибы или микроорганизмы распределены неравномерно: можно выделить отдельные «сгущения» - популяции.Популяция - совокупность особей того или иного вида, в течение большого числа поколений населяющих определенное пространство, внутри которого особи могут относительно свободно скрещиваться друг с другом, в то время как обмен особями с соседними популяциями в значительной мере затруднен. Согласно определению С.С. Шварца, популяция ? это элементарная группировка организмов определенного вида, обладающая всеми необходимыми условиями для поддержания своей численности длительное время в постоянно изменяющихся условиях среды.Слово «популяция» происходит от латинского populus ? народ, население. Популяциям свойственен рост, развитие, способность поддерживать существование в постоянно меняющихся условиях (то есть у популяции есть определенные генетические и экологические характеристики).Устойчивое существование различных видов животных и растений требует наличия определенных экологических условий и нужных ресурсов. При перемещении из одной местности в другую и условия, и ресурсы могут меняться, причем эти изменения происходят отнюдь не согласованно. Некоторые факторы могут меняться плавно (например, температура при продвижении с юга на север), другие ? вовсе не меняться (например, содержание диоксида углерода в воздухе) или меняться скачкообразно (как это, допустим, происходит с изменениями состава и структуры почв).Все это приводит к тому, что подходящие для того или иного вида местообитания формируются в пространстве как бы в виде отдельных «островков». Виды заселяют эти «островки» своими популяциями. Конечно, биологический вид не похож на сеятеля, засевающего природные участки группами своих особей: просто виды распространены не равномерно, а отдельными группами особей ? популяциями. Особи популяции, размножаясь, осваивают подходящие местообитания. В этом состоит своеобразие биологических видов ? они существуют в форме популяций.Популяции одного и того же вида могут быть отделены друг от друга четкими границами. Для водных организмов, например, такие границы, как правило, проходят по береговым линиям водоемов. У некоторых видов, однако, границы между популяциями нечеткие, размытые (например, у видов растений и животных, обитающих в наземно-воздушной среде и имеющих широкое географическое распространение). Таковы серая ворона или заяц-русак, встречающиеся в различных местообитаниях.

33. Роль мутаций в эволюции организма. Мутационный процесс как элементарный фактор эволюции. Мута́ция (лат. mutatio — изменение) — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки илиорганизма) изменение генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложен Гуго де Фризом. Процесс возникновения мутаций получил название мутагенеза. Роль мутаций в эволюции.При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом дляестественного отбора. Так, мутанты-меланисты (темноокрашенные особи) в популяциях березовой пяденицы в Англии впервые были обнаружены учеными среди типичных светлых особей в середине XIX века. Темная окраска возникает в результате мутации одного гена. Бабочки проводят день на стволах и ветвях деревьев, обычно покрытых лишайниками, на фоне которых светлая окраска является маскирующей. В результате промышленной революции, сопровождающейся загрязнением атмосферы, лишайники погибли, а светлые стволы берез покрылись копотью. В результате к середине XX века (за 50-100 поколений) в промышленных районах темная морфа почти полностью вытеснила светлую. Было показано, что главная причина преимущественного выживания чёрной формы — хищничество птиц, которые избирательно выедали светлых бабочек в загрязненных районах.Если мутация затрагивает «молчащие» участки ДНК, либо приводит к замене одного элемента генетического кода на синонимичный, то она обычно никак не проявляется в фенотипе(проявление такой синонимичной замены может быть связано с разной частотой употребления кодонов). Однако методами генного анализа такие мутации можно обнаружить. Поскольку чаще всего мутации происходят в результате естественных причин, то в предположении, что основные свойства внешней среды не менялись, получается, что частота мутаций должна быть примерно постоянной. Этот факт можно использовать для исследования филогении — изучения происхождения и родственных связей различных таксонов, в том числе и человека. Таким образом, мутации в молчащих генах служат для исследователей своеобразными «молекулярными часами». Теория «молекулярных часов» исходит также из того, что большинство мутаций нейтральны, и скорость их накопления в данном гене не зависит или слабо зависит от действия естественного отбора и потому остается постоянной в течение длительного времени. Для разных генов эта скорость, тем не менее, будет различаться.Исследование мутаций в митохондриальной ДНК (наследуется по материнской линии) и в Y-хромосомах (наследуется по отцовской линии) широко используется в эволюционной биологии для изучения происхождения рас и народностей, реконструкции биологического развития человечества.Мутагенез- искусственное получение мутаций с помощью физич. или химич. мутагенов. Один из важнейших приёмов эксперим. генетики. В селекции М. используют для получения перспективных мутантов животных, растений и микроорганизмов. Часто термины «мутагенез» и «мутационный процесс» отождествляются, что не оправдано, т. к. мутационный процесс — это многоэтапный процесс возникновения спонтанных или индуцированных мутаций, а М.— процесс индукции мутаций. 34. Изоляция как элементарный фактор эволюции. Формы изоляции. Примеры и их интерпретация. исключение или затруднение свободного скрещивания между особями одного вида. Изоляция является элементарным эволюционным фактором, действующим на микроэволюционном уровне и приводит к видообразованию. Географическая изоляция — обособление определенной популяции от других популяций того же вида каким-либо труднопреодолимым географическим препятствием. Подобная изоляция может возникнуть в результате изменения географических условий в пределах ареала вида или при расселении групп особей за пределы ареала, когда «популяции основателей» могут закрепиться в некоторых обособленных районах с благоприятными для них условиями внешней среды. Географическая изоляция — один из важных фактороввидообразования, так как она препятствует скрещиванию и тем самым обмену генетической информацией между обособленными популяциями.Репродуктивная (биологическая) изоляция приводит к нарушению свободного скрещивания или образованию стерильного потомства. Классифицируют экологическую, этологическую, временную, анатомо-морфо-физиологическую и генетическую репродуктивную изоляцию. При этологическом характере репродуктивной изоляции для особей разных популяций снижается вероятность оплодотворения ввиду различий в образе жизни и поведения, например, у разных видов птиц отличаются ритуалы ухаживания и брачные песни. Приэкологическом характере — различаются, условия обитания живых организмов, например, популяции рыб нерестятся в разных местах. При временной изоляции отличаются сроки размножения. При анатомо-морфо-физиологической репродуктивной изоляции у живых организмов возникают различия в строении, размерах отдельных органов половой системы, или возникают различия в биохимических аспектах репродуктивной функции. При генетическом характере репродуктивной изоляции возникают несовместимые гаметы или появляются гибриды с пониженной жизнеспособностью, плодовитостью или стерильностью.Перечисленные формы репродуктивной изоляции возникают независимо друг от друга и могут сочетаться в любых комбинациях. Однако, именно генетическую изоляцию считают одной из самых важных форм репродуктивной изоляции, так как остальные формы репродуктивной изоляции при видообразовании, в конечном итоге, ведут именно к возникновению независимости генофондов двух популяций. Возникновению репродуктивной изоляции часто способствует длительная географическая изоляция. классический пример разорванного ареала голубой сороки в Палеарктике,сходный случай разрыва ареала вьюна. Совершенно ясно, что в этих (и многих сходных) случаях изоляция соответствующих двух частей видового ареала является абсолютной и в пределах пред­видимых возможностей окончательной (без активного вмешатель­ства человека миграция менаду столь разобщенными частями ви­дового ареала невозможна).практически абсолютное разобщение частей ареала европейской серны, обитающей в семи далеко отстоящих друг от друга высокогорных массивах юго-западной Палеарктики.типичные случаи «сетчатого», свя­занного с речными поймами ареала пластинчатозубых крыс, болотного молочая, «пятнистый» ареал снежной полевки и соболя. 35. Естественный отбор и его формы. Творческая роль естественного отбора. Естественный отбор — процесс, изначально определённый Чарльзом Дарвином как приводящий к выживанию и преимущественному размножению более приспособленных к данным условиям среды особей, обладающих полезными наследственными признаками. В соответствии с теорией Дарвина и современной синтетической теорией эволюции, основным материалом для естественного отбора служат случайные наследственные изменения — рекомбинация генотипов, мутации и их комбинации.При отсутствии полового процесса естественный отбор приводит к увеличению доли данного генотипа в следующем поколении. Однако естественный отбор «слеп» в том смысле, что он «оценивает» не генотипы, а фенотипы, и преимущественная передача следующему поколению генов особи, обладающей полезными признаками, происходит независимо от того, являются ли эти признаки наследуемыми.Более успешной считают особь, которая оставила большее число потомков (то есть копий своих генов). Формы естественного отбораСуществуют разные классификации форм отбора. Широко используется классификация, основанная на характере влияния форм отбора на изменчивость признака в популяции.Движущий отбор — форма естественного отбора, которая действует при направленном изменении условий внешней среды. Описали Дарвин и Уоллес. В этом случае особи с признаками, которые отклоняются в определённую сторону от среднего значения, получают преимущества. При этом иные вариации признака (его отклонения в противоположную сторону от среднего значения) подвергаются отрицательному отбору. В результате в популяции из поколения к поколению происходит сдвиг средней величины признака в определённом направлении. При этом давление движущего отбора должно отвечать приспособительным возможностям популяции и скорости мутационных изменений (в ином случае давление среды может привести к вымиранию).Примером действия движущего отбора является «индустриальный меланизм» у насекомых. Движущий отбор осуществляется при изменении окружающей среды или приспособлении к новым условиям при расширении ареала. Он сохраняет наследственные изменения в определённом направлении, перемещая соответственно и норму реакции. Например, при освоении почвы как среды обитания у различных неродственных групп животных конечности превратились в роющие.Стабилизирующий отбор — форма естественного отбора, при которой его действие направлено против особей, имеющих крайние отклонения от средней нормы, в пользу особей со средней выраженностью признака. Понятие стабилизирующего отбора ввел в науку и проанализировал И. И. Шмальгаузен.Описано множество примеров действия стабилизующего отбора в природе. Например, на первый взгляд кажется, что наибольший вклад в генофонд следующего поколения должны вносить особи с максимальной плодовитостью. Однако наблюдения над природными популяциями птиц и млекопитающих показывают, что это не так. Чем больше птенцов или детёнышей в гнезде, тем труднее их выкормить, тем каждый из них меньше и слабее. В результате наиболее приспособленными оказываются особи со средней плодовитостью.Отбор в пользу средних значений был обнаружен по множеству признаков. У млекопитающих новорождённые с очень низким и очень высоким весом чаще погибают при рождении или в первые недели жизни, чем новорождённые со средним весомДизруптивный (разрывающий) отбор — форма естественного отбора, при котором условия благоприятствуют двум или нескольким крайним вариантам (направлениям) изменчивости, но не благоприятствуют промежуточному, среднему состоянию признака. В результате может появиться несколько новых форм из одной исходной. Дарвин описывал действие дизруптивного отбора, считая, что он лежит в основе дивергенции, хотя и не мог привести доказательств его существования в природе. Дизруптивный отбор способствует возникновению и поддержанию полиморфизма популяций, а в некоторых случаях может служить причиной видообразования.Одна из возможных в природе ситуаций, в которой вступает в действие дизруптивный отбор, — когда полиморфная популяция занимает неоднородное местообитание. При этом разные формы приспосабливаются к различным экологическим нишам или субнишам.Примером дизруптивного отбора является образование двух рас у погремка большого на сенокосных лугах. В нормальных условиях сроки цветения и созревания семян у этого растения покрывают всё лето. Но на сенокосных лугах семена дают преимущественно те растения, которые успевают отцвести и созреть либо до периода покоса, либо цветут в конце лета, после покоса. В результате образуются две расы погремка — ранне- и позднецветущая.Дизруптивный отбор осуществлялся искусственно в экспериментах с дрозофилами. Отбор проводился по числу щетинок, оставлялись только особи с малым и большим количеством щетинок.Половой отбор - это естественный отбор на успех в размножении. Выживание организмов является важным, но не единственным компонентом естественного отбора. Другим важнейшим компонентом является привлекательность для особей противоположного пола. Дарвин назвал это явление половым отбором.Положительный и отрицательный отбор:Положительный отбор— форма естественного отбора. Его действие противоположно отсекающему отбору. Положительный отбор увеличивает в популяции число особей, обладающих полезными признаками, повышающими жизнеспособность вида в целом.Отсекающий отбор — форма естественного отбора. Его действие противоположно положительному отбору. Отсекающий отбор выбраковывает из популяции подавляющее большинство особей, несущих признаки, резко снижающие жизнеспособность при данных условиях среды. С помощью отсекающего отбора из популяции удаляются сильно вредные аллели. Также отсекающему отбору могут подвергаться особи с хромосомными перестройками и набором хромосом, резко нарушающими нормальную работу генетического аппарата.

36. Среда как эволюционное понятие. Диалектико-материалистическое решение вопроса биологической целесообразности. это часть природы, окружающая живые организмы и оказывающая на них прямое или косвенное воздействие. Из среды организмы получают всё необходимое для жизни и в неё же выделяют продукты обмена веществ. Среда каждого организма слагается из множества элементов неорганической и органической природы и элементов, привносимых человеком и его производственной деятельностью. При этом одни элементы могут быть частично или полностью безразличны организму, другие необходимы, а третьи оказывают отрицательное воздействие. Исследование биол. объектов как органически целостных систем неразрывно связано с анализом еще одного фундаментального свойства живых организмов - их органической целесообразности, внутренней активности. Биол. наука доказала возможность познания органической целесообразности на основе раскрытия ее материальных причин, не прибегая к телеологическому постулату об идеальной "внутренней цели", якобы направляющей и одухотворяющей живые организмы. Впервые это удалось сделать Ч. Дарвину. Он неопровержимо доказал, что органическая целесообразность формируется в результате эволюционного приспособления видов к условиям их существования. Эта целесообразность относительна и, согласно дарвинизму, не выпадает из цепи материальных причин, но не укладывается в прокрустово ложе механистического детерминизма, признающего лишь необходимость и полностью исключающего случайность в причинно-следственных изменениях. Механистический детерминизм выражает отношения простейшей причинной связи, к-рая не может быть отброшена научным знанием вообще. Однако при анализе органической целостности механическая причинность оказывается недостаточной, ибо выступает лишь как одна из частных форм причинной связи. Прогресс биологии привел к развитию понятия "детерминизм" до уровня диалектико-материалистического понимания причинно-следственных отношений.

37. Тип Хордовые. Систематика, морфология. Хо́рдовые (лат. Chordata) — тип вторичноротых животных, для которых характерно наличие мезодермального осевого скелета в видехорды, которая у высших форм заменяется позвоночником. По строению и функции нервной системы тип хордовых занимает высшее место среди животных. В мире известно более 60000 видов хордовых, в России — 4 300 видов.Понятие хордовые объединяет позвоночных и некоторых беспозвоночных, имеющих, по крайней мере некоторый период их жизненного цикла, хорду, полый спинной нервный тяж, жаберные щели, эндостиль, и хвост, располагающийся после анального отверстия. Тип хордовых делится на три подтипа: головохордовые (ланцетники), оболочники, позвоночные — единственный подтип, имеющий череп. Ранее в качестве четвёртого подтипа рассматривались полухордовые, которые теперь вынесены в отдельную группу. Хордовые — тип животных, характеризующихся билатеральной симметрией и наличием, по-крайней мере, на определенных стадиях развития следующими признаков:1.Хорда, представляющая собой эластичный стерженьмезодермального происхождения. У позвоночных хорда в ходе эмбрионального развития полностью или частично замещается хрящевой и костной тканью, образующейпозвоночник.2.Нервная трубка, расположенная дорсально. У позвоночных развивается в спинной мозг и головной мозг.3.Жаберные щели — парные отверстия в глотке. У низших хордовых участвуют в фильтрации воды для питания. У наземных позвоночных жаберные щели закладываются в раннем эмбриогенезе в виде жаберных мешочков.4.Мышечный хвост — постанальный отдел тела, расположенный каудальнее смещенного на брюшную сторону тела ануса (в него заходят хорда и нервная трубка, но не заходит кишечник).5.Эндостиль — желобок на вентральной стороне глотки. У низших хордовых-фильтраторов в нём производится слизь, помогающая собирать частицы пищи и доставлять их в пищевод. Также в нём накапливается йод и, возможно, он является предшественником щитовидной железы позвоночных. Как таковой, эндостиль у позвоночных есть только упескоройки. Классификация:Обычно выделяют три подтипа хордовых (иногда четыре). Высшим подтипом являются позвоночные, к которым принадлежит порядка 95 % всех видов хордовых. Из низших хордовых выделяют бесчерепных и оболочников. Наиболее древний и самый примитивный подтип, представители которого занимают промежуточное положение между беспозвоночными и хордовыми животными, выделяют в отдельный тип животных — полухордовые (Hemichordata).Ниже перечислены три общепризнанных подтипа хордовых вместе с входящими в них классами и подклассами[14].Круглоротые, рыбы и амфибии относятся к анамниям, остальные классы позвоночных — к амниотам.Иногда классы огнетелок, сальп и бочёночников включают в качестве отрядов в класс Thaliacea. Также существует довольно много альтернативных классификаций позвоночных. Их наличие связано, в частности, с тем, что многие традиционно выделяемые группы позвоночных парафилетичны. Например, парафилетичны лопастеперые (чтобы эта группа стала монофилетичной, в неё надо включить наземных позвоночных) и рептилии (в них к позиций кладистической систематики следовало бы включить класс птиц).Очень часто используется несистемная группа беспозвоночные, которая включает два подтипа хордовых (головохордовые и оболочники) и все остальные типы животных. Её использование подчёркивает доминирующее положение, которое занимают позвоночные в животном мире.Подтипы:Головохордовые-(лат. Cephalochordata) или бесчерепны́е (лат. Acrania)[15] — небольшие морские рыбо-образные животные со всеми признаками, свойственными хордовым. Бесчерепные — подтип низших хордовых животных, в отличие от других хордовых (оболочникови позвоночных), сохраняющий основные признаки типа (хорданервная трубка и жаберные щели) в течение всей жизни. Головной мозг отсутствует, органы чувств примитивны[16]. Ведут придонный образ жизни, по характеру питания — роющие фильтраторы. Возможно являются предками позвоночных, либо являются последними живыми членами группы от которой произошли позвоночные[17][18]. Всего к бесчерепным относятся около 30 видов, составляющих один класс — ланцетники.Оболочники-лат. Tunicata, Urochordata) — подтип хордовых животных. Включают 5 классов — асцидийаппендикулярийсальп,огнетелок и бочёночников. По другой классификации последние 3 класса считаются отрядами класса Thaliacea[19]. Известно более 1 000 видов. Они распространены по всему миру и населяют морское дно.Три крупных класса оболочников:Асцидии — низшие мягкотелые хордовые-фильтраторы, во взрослом состоянии, ведущие сидячий образ жизни[20];аппендикулярии сохраняют личиночные черты, такие как хвост на протяжении всей жизни. По этой причине долгое время рассматривались как личинки асцидий и сальп[21]. Из-за наличия длинных хвостов личинки оболочников называют лат. urochordata[20];третья группа оболочников — свободноплавающие сальпы питаются планктоном. В их жизненном цикле известно два поколения — одиночное гермафродитное и почкующееся колониальное бесполое. У личинок этих животных есть все основные признаки хордовых, в том числе хорда и хвост. Они также оснащены рудиментарным мозгом и датчиками освещённости и положения (крена)[20].Позвоночные (лат. Vertebrata) — высший подтип хордовых животных. Доминирующая (наряду с насекомыми) на земле и в воздушной среде группа животных. Отличаются от других хордовых наличием обособленного черепа и развитием головного мозга и органов чувств. Хорда у большинства представителей высших хордовых замещается на позвоночник[22], защищающий спинной мозг и состоящий, как правило, из хрящевой и костной ткани. Эндостиль, как таковой, присутствует только у личинок миног[23]. По сравнению с низшими хордовыми — бесчерепными и оболочниками — они характеризуются значительно более высоким уровнем организации, что наглядно выражено как в их строении, так и в физиологических отправлениях. Среди позвоночных нет видов, ведущих сидячий (прикреплённый) образ жизни. Они перемещаются в широких пределах, активно разыскивая и захватывая пищу, находя для размножения особей другого пола, спасаясь от преследования врагов.Положение миног неоднозначно. У них в наличии недоразвитый череп и рудиментарные позвонки — следовательно, они могут рассматриваться как позвоночные и истинные рыбы[24]. Тем не менее, молекулярные филогенетики, использовавшие биохимические реакции для классификации организмов, в результате отнесли эту группу позвоночных к семейству Микси́новые (лат. Myxinidae) классакруглоротых[25]. Миксины, имеющие жаберный скелет, состоящий из небольшого числа хрящевых пластинок, рудиментарные позвонки, не рассматриваются как истинные позвоночные[26] — их считают группой из которой эволюционировали позвоночные[27

38. Подтип Позвоночные. Систематика, морфологияПозвоночные (лат. Vertebrata) — подтип хордовых животных. Доминирующая (наряду с насекомыми) на земле и в воздушной среде группа животных.Всех остальных животных объединяют в несистематическую группу беспозвоночные. Использование этого термина оправдывается лишь той важной ролью, которую играют позвоночные в современном животном мире, так как в остальном группа беспозвоночных объединяет организмы, зачастую не имеющих практически ничего общего. Позвоночные — высший подтип хордовых. По сравнению с низшими хордовыми — бесчерепными и оболочниками — они характеризуются значительно более высоким уровнем организации, что наглядно выражено как в их строении, так и в физиологических отправлениях. Среди позвоночных нет видов, ведущих сидячий (прикрепленный) образ жизни. Они перемещаются в широких пределах, активно разыскивая и захватывая пищу, находя для размножения особей другого пола, спасаясь от преследования врагов. Активные перемещения обеспечивают позвоночным животным возможность смены мест обитания в зависимости от изменений условий существования и потребностей на разных этапах их жизненного цикла, например при развитии, половом созревании, размножении, зимовках и т. д. Указанные общебиологические черты позвоночных прямо связаны с особенностями их морфологической организации и с физиологией.Нервная система значительно более дифференцирована, чем у низших хордовых. У всех животных этого подтипа развит головной мозг, функционирование которого обусловливаетвысшую нервную деятельность — основу приспособительного поведения. Для позвоночных характерно наличие разнообразных и сложно устроенных органов чувств, служащих основной связью между живым организмом и внешней средой.С развитием головного мозга и органов чувств связано возникновение черепа, служащего надёжным футляром для этих крайне нежных и важных органов. В качестве осевого скелетавзамен хорды у подавляющего большинства животных функционирует более совершенное и прочное образование — позвоночный столб, который выполняет роль не только опорного стержня тела, но и футляра, заключающего в себе спинной мозг.В области переднего отдела кишечной трубки возникают подвижные части скелета, из которых формируется ротовой, а у огромного большинства — челюстной аппарат, обеспечивающий схватывание, удерживание пищи, а у высших позвоночных и измельчение её.Позвоночные объединены общностью морфофизиологической организации. Во всех системах органов этих животных можно проследить черты преемственных изменений в связи с эволюционным преобразованием органов. Ниже излагается общий план строения, функционирования и закладки в онтогенезе отдельных систем органов.

39. Филогенез нервной системы хордовых.ЦНС хордовых имеет вид сплошной нервной трубки (трубчатая нервная система), которая у позвоночных животных образует в переднем конце мощное утолщение - головной мозг. Она расположена дорсальнее пищеварительной трубки (у беспозвоночных брюшная цепочка протянулась вентральнее), защищена костными образованиями (череп и позвоночник).Развитие передних (головных) отделов ЦНС зависит, прежде всего, от развития сенсорных (анализаторных) и интегративных функций. Моторными функциями у низших позвоночных животных руководит задний отдел ЦНС (спинной мозг). Постепенно головной отдел берет на себя все функции (происходит цефализация функций). В дальнейшем происходит кортикализация функций, т. е. доминирование корковых структур в реализации как моторных, так и сенсорных, и, в особенности, интегративных и высших психических функций. Это отнюдь не означает полного замещения всех нижележащих структур. В комплексе с корой они образуют сложные мозговые системы, в которых главная роль может принадлежать неокортикальным структурам.У наиболее примитивного представителя хордовых - ланцетника - ЦНС организована в виде малодифференцированной трубки. Головной мозг не развит. Соответственно и все примитивные функции (моторные, сенсорные и интегративные) осуществляются на уровне спинного мозга.

40. Филогенез кровеносной системы хордовых.1.У хордовых замкнутая, состоит из 2 основных артериальных сосудов:брюшной и спиной аорт. По брюшной аорте венозная кровь продвигается кпереди, обогащается кислородом в органах дыхания, по спиной- кзади., из нее кровь течет через сист капилляров возвращается по венам в брюшную аорту.2.У ланцетника кров.сист: 1 круг кровообращения. По брюшной аорте венозная кровь поступает в приносящие жаберные артерии, которые по кол-ву соответствуют числу межжаберных перегородок, где обогащается кислородом. По выносящим жаберным артериям кровь идет в корни спин.аорты, продолжаются как вперед, неся артериальную кровь в голову, так и назад. Передние ветви этих 2 сосудов явл- сонной артерией, на уроне заднего конца глотки задние ветви образуют спинную аорту, которая ветвится на артерии, направляющиеся к органам и распадаются на капилляры.

После тканевого газообмена, кровь идет в парные передние и задние кардиальные вены, которые в свою очередь впадают в кювьеров проток. Оба кювьеровых протока впадают в брюшную аорту, от стенок пищеварит сист. венозная кровь оттекает по воротной вене печени в печеночный вырост, где формируется сист капилляров. Затем они собираются в печеночную вену и вновь впадают в брюшную аорту.3.у рыб часть брюшной аорты преобразовалась в двухкамерное сердце, состоящее из предсердия и желудочка.4.у земноводных с выходом на сушу и появлением легочного дыхания возникает 2 круга кровообращения., в сердце появляются приспособления, направленные на разделение артериальной и венозной крови.5.у амфибий сердце 3 камерное., в правое предсердие впадают вены большого круга(венозная кровь), в левое-малого круга (артериальная)передние кардиальные вены, обеспечивающие отток крови от головы, называются теперь яремными венами, в кювьеровы протоки- передние полые вены..6.в кров.сист. пресмыкающихся возникают изменения: в желудочке имеется неполная перегородка, от сердца отходит 3 сосуда, из левой половины желудочка начинается правая дуга аорты(артериальная кровь), из правой половины- легочная артерия с венозной кровью.7.у млекопитающих: полное разделение венозного и артериального кровотоков., т.е за счет 4 камерного сердца, редукцией парвой дуги аорты и сохранением только левой, в результате все органы снабжаются артериальной кровью. В венах большого круга кровообращения:возникла безымянная вена. Левый кювьеров проток в виде sinus coronarius собирает венозную кровь от миокарда.

Сердце закладывается на первых этапах развития в виде недифффиринцированной брюшной аорты, которая в последующим будет становится 2, 3, 4-х камерным. Закладка сердца у человека осуществляется на 20-е сутки эмбриогенеза, как у всех позвоночных, позади головы.позже за счет смещения легких в грудную полость осуществляется и перемещение сердца в переднее средостение.Артериальные жаберные дуги:1и2 редуцируются,3 –сонная артерия(кровь к голове),4-дуга аорты(основные сосуды большого круга кровообращения),5-редуцируется,6-легочная артерия 41. Филогенез мочеполовой системы хордовых.

закладка мочеполовой в эмбриогенезе -нефрогонотом –формируется в области ножки сомита в контакте с целомом ( где располагаются половые железы) в филогенезе позвоночных почка прошла 3 этапа: предпочка- головная (пронефрос) первичная почка- туловищная(мезонефрос) и вторичная почка(метанефрос)Предпочка полностью развивается и функционирует как самостоятельный орган у личинок рыб и земноводных, она имеет сегментарное строение. У взрослых рыб и земноводных кзади от предпочек, в туловищных сегментах формируются первичные почки, в процессе диссимиляции воды с мочой и теряется много, поэтому животные, обладающие такой почкой, могут обитать только в водной или влажной среде.

У пресмыкающихся и млекопитающих возникают вторичные почки., которые закладываются в тазовом отделе тела и содержат сотни тысяч нефронов, образующихся за счет многократного ветвления развивающихся нефронов., каналец нефрона удлиняется, у млекопитающих дифференцируется на дистальный и проксимальный участок, между которыми появляется петля Генли. Такое строение обеспечивает полноценную фильтрацию плазмы крови в капсуле, и эффективное обратное всасывание в кровь воды, глюкозы, гормонов, солей.Эволюция мочеполовых протоков.:У всех позвоночных при развитии предпочки вдоль тела, от головного конца к клоаке, закладывается пронефрический канал- по которому продукты диссимиляции из нефронов поступают во внешнюю среду. Далее он расщепляется на 2: вольфов- вступает в связь с нефронами первичной почки, мюллеров- срастается с передним концом нефрона почки и образует яйцевод.

У самок рыб и земноводных вольфов канал- фу-я мочеточника, мюллеров-яйцевода. У самцов :мюллеров- редуцируется, вольфов -половая и выделительная.

У пресмыкающихся и млекопитающих у самцов вольфов канал-семяизвергательную, мюллеров- редуцируется. У самок вольфов- редуцируется, мюллеров- становится яйцеводом. У плацентарных мюллеров канал- на яйцевод, матку и влагалище.

В эмбриогенезе человека закладываются парные вольфовы и мюллеровы каналы, позже в зависимости от пола происходит их редукция. Рудимент мюллерова канала у мужчин- мужская маточка(в предстательной железе). У полов женского пола возможно нарушение редукции вольф.каналов, это аномалия опасна возникновением кист