Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BORZENKOV_MATLAB ОДУ.pdf
Скачиваний:
173
Добавлен:
11.05.2015
Размер:
1.91 Mб
Скачать

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

coskx

 

 

 

Пример 2. Найти периодическое решение уравнения y (x) 4y

.

В

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0

k

 

 

общих

обозначениях

 

получаем

 

 

p

0,

p

 

4 22 , a

 

1,

 

ak

1

 

,

 

 

 

 

0

 

k2

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 1,2,3,...; b

k

0,

k 1,2,3,... .

 

Для правой части имеет место p

2

k2 при

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

k0 2.

При

этом

ak

 

a2

 

,

bk

 

b2

0,

т.е. правая

 

часть

 

содержит

0

 

0

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

резонансную гармонику cos2x. Следовательно, периодического решения исходного уравнения не существует.

Задачи для решения

Найти периодические решения следующих уравнений в случае их существования:

 

 

coskx

 

 

 

 

 

 

 

 

 

 

 

coskx

 

 

 

 

 

1.

y 4y

. 2.

y y

 

sinx

 

. 3.

y y

. 4.

y 4y cos2 x.

 

 

2

 

 

3

 

k 4

k

 

 

 

 

 

 

sinkx

k 1

k

 

coskx sinkx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

y y cosx cos2x. 6.

y y

 

 

 

. 7. y 3y 1

 

 

.

 

k

2

 

 

 

k

3

 

 

 

 

 

 

 

k 1

 

 

 

 

 

k 1

 

 

§5. Уравнение Бесселя

5.1. Гамма-функция. При изучении колебательных процессов часто необходимо решать уравнение Бесселя. Его изучению кратко предпошлем некоторые свойства факториальной функции, которая называется Гаммафункцией и обозначается (x) .

Трансцендентная функция (x) распространяет значение факториала x! на случай любого x, действительного или комплексного, x 0, 1, 2,.... Гаммафункция была введена Леонардом Эйлером при помощи бесконечного произведения

n!nx

(x) limn x(x 1)(x 2)...(x n)

lim

n

 

nx

 

 

 

 

,

(5.1)

 

 

x

 

 

 

 

x

 

x(1 x) 1

 

... 1

 

 

 

 

 

 

 

2

 

 

n

 

из которого Эйлер получил интегральное представление (x) – Эйлеров интеграл второго рода – в виде

 

 

(x) tx 1e tdt , Rex 0.

(5.2)

0

Чаще всего, определяя -функцию, исходят из формулы (1.2). Выясним область сходимости несобственного интеграла (5.2). Имеем

1

x 1 t

 

x 1 t

 

x 1

 

t

 

 

(x) t

dt t

dt t

e

dt .

(5.3)

e

e

 

 

0

 

0

 

1

 

 

 

 

 

106

Оба интеграла в этом равенстве сходятся равномерно по параметру x на любом конечном отрезке [a,b] (0, ) по признаку сравнения Вейерштрасса.

Так как подынтегральная функция tx 1e t непрерывна при t 0, x 0, то оба интеграла в равенстве (5.3) являются непрерывными функциями параметра

x на отрезке [a,b] (0, ). Поэтому (x)

является непрерывной при x

0.

При x 0 функция

(x)

будет и непрерывно дифференцируемой,

причем

1

x 1

 

t

 

x 1

 

t

 

 

x 1

 

t

 

 

 

 

e

lntdt t

e

lntdt t

e

lntdt .

Дифференцирование

под

(x) t

 

 

 

 

 

 

0

 

 

 

1

 

 

 

 

0

 

 

 

 

 

 

знаком интеграла законно в силу равномерной сходимости (5.2) по параметру x

 

x 1 t

 

 

 

 

(n)

 

 

 

 

 

 

 

(lnt)

2

dt,

 

(x) t

x 1

t

(lnt)

n

dt,n 1,2,... .

наотрезке [a,b] (0, ): (x) t

e

 

 

e

 

 

0

 

 

 

 

 

 

0

 

 

 

 

 

Так как (x) 0, то гамма-функция является выпуклой функцией, имеющей положительный единственный минимум.

Пример. По определению найдем (1). Имеем (1) e tdt e t |0 1. Найдем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

1

 

 

t

 

 

e

t

 

 

 

t

s,dt 2sds

 

 

2se

s2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

e

dt

 

 

 

 

dt

 

t 0 s 0

 

 

 

ds

 

 

 

 

. Получаем

(

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

t s

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

, так как интеграл Пуассона e x2dx

 

.

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

2

 

 

 

 

 

 

 

Приведем некоторые полезные соотношения.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x 1)

x (x).

 

 

 

 

 

 

 

(5.4)

 

 

 

 

 

 

Из (1) 1

и (5.5) при целом n 0,1,2... имеем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n 1) n!

 

 

 

 

 

 

 

 

 

 

 

(5.5)

При

n 0 из (5.5) следует

0! (1) 1.

Применяя повторно (5.4)

при x 0,

получаем

(x n) (x n 1)(x n 2)...(x 1)x (x).

 

 

 

(5.6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если x (0,1], то (x 1) (1,2]

и т.д. Тогда,

 

зная (x),x (0,1], можно вычислить

(x),x (1,2] и т.д. В частности, имеем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 x) x ( x), x (0,1).

 

 

 

(5.7)

Справедливо следующее тождество:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

(x)

 

1

1

1

 

1

 

 

 

...

 

ln n x

 

 

x lim e

2

3

 

n

 

n

 

 

x

 

x

n

 

1

 

e

 

 

 

n 1

 

n

 

 

xe x

 

 

x

 

x

 

 

n ,

 

 

 

1

 

e

 

(5.8)

 

 

 

n 1

n

 

 

 

 

где n x

elnn

x

e xlnn,

 

1

 

 

lim(

lnn) – постоянная Эйлера, первые

 

 

 

 

 

 

n k 1n

 

цифры которой представляют число 0,577217....

107

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

x

 

 

1

 

 

 

x

 

 

 

 

 

x

 

 

 

 

x

 

x

Согласно (5.8) имеем

 

 

 

 

( x)xe

 

 

 

 

1

 

 

 

e

 

 

n

 

e

 

 

 

 

1

 

en .

(x) ( x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

n 1

 

n

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отсюда и из формулы (5.7) получаем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.9)

 

 

 

 

 

 

 

x 1

 

 

2

 

.

 

 

 

 

 

 

 

 

 

 

 

(x) (1 x)

n 1

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Справедливы соотношения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, 0 x 1;

 

 

 

1

1

 

 

 

 

 

 

 

 

 

 

 

(x) (1 x)

 

x

 

 

 

 

 

 

 

 

x

 

 

 

 

.

(5.10)

sin x

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos x

 

 

 

 

1

Пример. Найдем .

2

т.е.

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

!

,

 

2

 

 

2

 

 

 

 

 

При x

1

из формулы (5.10) имеем

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

поскольку

(x) 0. Положив в формуле

(5.6)

x

1

,

 

 

 

 

 

 

 

 

 

 

 

2

 

получим

 

 

 

1

 

 

1

3

3 1

 

1

 

 

1 3 ... (2n 3)(2n 1)

 

 

 

 

 

(5.11)

 

 

 

 

 

 

 

 

 

n

 

 

 

n

 

n

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

2n

 

 

 

 

 

 

 

 

 

 

2

 

2

2 2 2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

7

5

 

5

 

5

 

 

5

 

3

 

 

Найдем

 

 

. По формуле (5.4) получим

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

2

 

 

 

2

 

 

 

5

 

3

 

3

 

5

 

3

 

 

1

 

 

 

 

5

 

3

 

1

 

 

1

 

 

 

1 3 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Отсюда, используя (5.11),

 

 

 

 

 

 

 

2

 

 

 

2

 

 

23

 

 

 

2 2

 

2

 

2 2

2

 

 

 

 

2 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

будем иметь

 

7

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

3

5

 

 

 

1

 

5 3 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

3

 

 

 

3

 

 

 

3

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

23

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

2

 

 

 

 

5.2. Уравнение Бесселя. Его интегрирование с помощью обобщенного степенного ряда. Следующее линейное однородное дифференциальное уравнение второго порядка

x2 y xy (x2 2 )y 0

(5.12)

называется уравнением Бесселя с параметром . Чтобы найти общее решение уравнения (5.12), следует найти два его линейно независимых решения.

Решение уравнения (5.12), вообще говоря, ищется в виде так называемого обобщенного степенного ряда

 

 

 

 

 

 

 

 

 

 

 

y y(x) xp ak xk ak xk p ,

a0 0.

(5.13)

 

 

 

k 0

k 0

 

 

 

Продифференцировав формально степенной ряд два раза, получим

 

 

 

 

 

 

 

 

 

y y (x) ak (k p)xk p 1,

y y (x)

ak (k p)(k p 1)xk p 2.

Подставив

k 0

в уравнение (5.12), получим

k 0

 

 

 

 

 

 

 

y,y ,y

 

 

 

 

108

 

 

 

 

 

 

 

ak (k p)(k p 1)xk p ak (k p)xk p ak xk p 2 2 ak xk p 0,

k 0

 

 

 

k 0

k 0

k 0

 

 

x2 2)xk p 0. Приравняв коэффициенты при одинаковых

или ak ((k p)2

k 0

 

 

 

 

 

 

степенях x к нулю, получим бесконечную систему

 

 

 

xp

 

a0(p2 2) 0,

 

 

 

 

 

 

 

xp 1

a ((p 1)2 2) 0,

 

 

 

xp 2

1

 

 

 

 

a2((p 2)2 2) a0 0,

 

 

 

xp 3

a3((p 3)2 2) a1 0,

(5.14)

 

 

...

......

 

 

 

 

xp n

an((p n)2 2) an 2 0,

 

 

 

...

......

 

 

По условию

a0 0. Следовательно,

из первого уравнения

находим p .

Пусть p

0.

Тогда из

равенств

(5.14) следует, что коэффициенты an с

нечетными индексами равны нулю, а для коэффициентов с четными индексами будем иметь соотношения

 

 

 

 

a2

 

 

a0

 

 

 

a0

 

 

a0

,

 

 

 

 

 

 

 

(2 )2 2

4(1 )

 

2( 1)

 

 

 

 

 

 

 

 

 

 

1 2

 

 

 

 

 

 

a4

 

 

a2

 

 

 

 

a2

( 1)2

 

a0

 

 

,

 

 

 

(4 )2

 

 

2 4( 2)

 

 

 

 

 

 

 

 

 

2

 

1 2 24( 1)( 2)

 

 

 

a6

a4

 

 

( 1)3

 

 

a0

 

 

 

 

( 1)3

 

a0

 

.

(6 )2

 

 

2 4 6 23(1 )(2 )(3 )

3!26(

1)(

 

 

2

 

 

 

2)( 3)

По

индукции

получаем, что

ak

 

 

 

( 1)k a0

 

 

 

 

 

 

. Подставив

эти

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k!22k ( 1)( 2)...( k)

 

коэффициенты в ряд (5.13), получим решение уравнения Бесселя в виде

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y y(x) ( 1)k

 

 

 

 

a0x

 

 

 

 

 

x2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0

 

 

 

k!22k ( 1)( 2)...( k)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.15)

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

x

 

2k

 

 

 

 

 

 

 

 

( 1)k

 

 

 

0

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0

 

k!( 1)( 2)...( k) 2

 

 

 

 

 

Для решения (5.15) произвольный коэффициент a0

принято выбирать в виде

a0

1

 

 

1

 

 

Так

как

 

(k 1) ( 1)( 2)...( k) ( 1),

то

2 ! 2 ( 1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

решение (5.15) уравнения Бесселя представится в виде

109

 

 

 

( 1)k x x

2k

 

 

 

 

 

y y(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0k!2 ( 1)( 1)( 2)...( k)

(5.16)

 

 

 

( 1)k

 

x

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J (x).

 

 

 

(k 1) (k

 

 

 

 

 

 

 

k 0

1) 2

 

 

 

 

1

 

 

 

При p , выбрав коэффициент a0

в виде a0

 

 

 

, функцию

J (x)

2 ( 1)

запишем в форме ряда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k

 

 

 

 

 

 

( 1)k

 

 

x

 

 

 

 

J (x)

 

 

 

 

 

 

 

 

 

.

 

 

(5.17)

(k 1) (k 1)

 

 

 

 

k 0

2

 

 

 

 

 

Функции J (x),J (x), определенные соответственно равенствами (5.16)

и (5.17), называются функциями Бесселя первого рода порядка

и

или

цилиндрическими функциями первого рода.

 

J (x) и

При

нецелом ряды (5.16) и (5.17), определяющие функции

J (x), по

признаку

Даламбера сходятся при всех x.

Так

как

J (x) 0,J

(x) при

x 0, то функции линейно независимы при

, не

равном целому числу n. В этом случае общее решение уравнения Бесселя записывается в виде

 

 

y y(x) c1J (x) c2J (x),

– нецелое,

(5.18)

где c1 и c2 – произвольные постоянные.

 

 

При целом, n, функции Jn(x) и J n (x)

линейно зависимы,

так как

имеет место равенство

 

J n(x) ( 1)n Jn(x).

 

 

 

 

 

 

(5.19)

Действительно, так как функция (x) определена при действительных

x при

 

( 1)k

x

 

2k n

 

 

x 0, то J n(x)

 

 

 

 

 

. Положим k n p. Тогда p=0, 1, 2…,

 

 

 

k nk!(n k)! 2

 

 

 

 

k n p и, значит,

 

( 1)n p

x

2p n

J n(x)

 

 

 

 

 

2

p o(n p)!p!

 

 

( 1)p

x

 

2p n

( 1)n

 

 

 

 

( 1)n Jn(x),

 

2

p o p!(n p)!

 

 

что соответствует равенству (5.17).

Таким образом, при n целом функции Jn(x) и J n(x) не образуют фундаментальную систему решений уравнений Бесселя. Второе решение

уравнения Бесселя, линейно независимое с Jn(x),

определяется предельным

соотношением

J (x)cos J (x)

 

 

 

Nn(x) lim

,

– нецелое.

(5.20)

 

n

sin

 

функцией

Функция Nn(x), определенная формулой (5.20), называется

Неймана или цилиндрической функцией Бесселя второго рода.

110

 

 

 

 

Следовательно,

при

 

целом,

n,

 

общее решение уравнения Бесселя

имеет вид

 

 

 

 

 

 

 

 

 

 

 

 

y y(x) c1Jn(x) c2Nn(x),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где c1 и c2 – произвольные постоянные.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример. Найти общее решение уравнения Бесселя x2 y xy (x2

0,25)y 0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

 

 

 

 

 

 

u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

. Введем замену

y

 

 

 

 

 

. Тогда

 

y

 

 

 

 

 

 

 

 

 

2

 

x

 

 

 

 

2u x

 

u

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

2 x3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2u

 

 

 

 

 

 

 

x

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2u x

 

u )2

 

 

 

 

(2u x u)

 

2 x3

 

4x2u 4xu 3u

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2x3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4x2 x

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в наше уравнение Бесселя, получаем

 

 

 

 

 

 

 

 

 

 

 

 

 

Подставив y,y ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4x

2

u 4xu 3u

 

2u x u

 

 

 

1

 

 

u

 

 

 

 

 

 

 

 

4x

2

u

 

4xu

 

3u

 

 

 

 

 

4x

2

u u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2u x u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

0 или

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

4 x

 

 

2 x

 

 

 

 

 

 

 

4 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

Отсюда окончательно получаем 4x2u 4x2u 0 u u 0. Общим решением

этого уравнения

является

функция

 

u u(x) Acosx Bsin x,

 

 

где A и B

произвольные константы. Учитывая замену

 

 

y

u

 

,

получим общее решение

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

рассматриваемого дифференциального уравнения:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y y(x)

 

 

u

 

A

cos

x

B

 

sin

x

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.21)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Но, с другой стороны, решениями этого уравнения, согласно (5.16) и

(5.17), служат функции

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

 

 

x

2k

 

 

 

 

 

 

( 1)k

 

 

 

 

 

x

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

J1 (x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

k 0 (k 1) k

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

k 0 (k 1) k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

 

 

x 2k

 

 

 

 

 

 

( 1)k

 

 

 

 

 

x 2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

2

.

J

1 (x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

k 0 (k 1) k

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

k 0 (k 1) k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

Частные решения J1

(x) и

J

1

 

 

 

 

 

2

 

2

 

 

(x) можно получить из общего решения (5.21)

при некоторых значениях констант A и B. Найдем это константы. Имеем

 

cosx

 

sin x

 

 

 

( 1)k

x

 

A

 

 

 

B

 

 

 

J1

(x)

 

 

 

 

 

 

 

 

 

 

 

 

3

 

2

x

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

k 0

(k 1) (k

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2k 1

2

111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

x

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

или Acosx Bsin x

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

Отсюда при

 

 

 

 

получаем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0 (k 1) (k

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 0, т.е. имеем равенство

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x

 

 

 

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.22)

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

k 0 (k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Чтобы найти константу B, разложим функцию

sin

 

 

 

 

по степеням x:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2k 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 2 sin x x

 

 

2 ( 1)k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2k 1)!

(2k 1)!

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0

 

 

 

 

 

 

 

 

 

 

 

 

k 0

 

 

 

 

 

 

 

Таким образом, из равенства (5.22) получаем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B ( 1)k

 

 

 

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0

 

 

 

 

 

 

(2k 1)!

k 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(k 1) k

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сравнивая коэффициенты при одинаковых степенях x, имеем равенства

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2k 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(k 1) k

 

 

 

 

2

 

 

 

 

 

 

 

 

 

2 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2k 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2k 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отсюда

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

Однако,

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

(k 1) k

 

 

 

 

 

 

 

 

2

 

 

2 2

 

 

 

 

 

(k 1)

 

 

 

 

 

 

 

 

2

 

 

2 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(k

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1 3 5...(2k 1)(2k 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1)

 

 

 

 

 

 

 

 

 

 

 

 

.

согласно формуле (5.12), имеем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k 1

 

 

 

 

 

 

 

 

 

 

 

 

Тогда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2k 1)!2k 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5...(2k)(2k 1)

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 3 5...(2k 1)(2k 1)

2k

 

 

 

2 (k 1) 2k

 

 

 

 

 

 

 

 

 

 

 

 

 

1 3 5...(2k 1)(2k 1) k!2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 4 6...(2k)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k k!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

2

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k!2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k!2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, в силу равенства (5.22) получаем

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

 

 

 

x

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J1 (x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x.

 

 

 

 

 

 

 

 

 

 

 

 

(5.23)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

k 0 (k 1) k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналогично

112

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

x

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acosx Bsin x

 

 

 

xJ

 

1 (x)

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

(5.24)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0 (k 1) k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отсюда

 

при

x 0

имеем

 

 

 

 

A

 

 

 

 

 

 

2

 

 

 

.

Проинтегрировав

равенство

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

 

 

 

 

 

1

2k

 

 

 

x2k 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

(5.24),

 

получим

 

Asin x Bcosx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

При

 

x 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

2k 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0 (k 1) k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

получаем, что B 0. Таким образом, из равенства (5.24) имеем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)k

 

 

 

 

 

 

 

 

 

 

x

2k

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

1 (x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cosx.

 

 

 

 

 

 

 

 

 

 

 

(5.25)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

k 0 (k 1) k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Справедливо

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x) J (x)).

 

 

 

 

(5.26)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J (x) J 1(x) x J

(x) (или xJ 1(x) xJ

 

 

 

 

Таким образом,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(или xJ 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x)).

 

 

 

 

(5.27)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J (x) J 1(x) x J (x)

 

(x) J (x) xJ

 

 

 

 

 

Сложив (5.26) и (5.27), получим формулу

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а вычтя,

 

 

2J (x) J 1(x) J 1(x),

будем иметь равенство J 1(x) J 1

(x) 2

 

J (x).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример. Найти общее решение уравнения x2 y xy ( 2x2

2)y 0. Введем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

dy

 

 

 

 

 

 

 

dy

 

 

 

 

dt

 

 

 

 

 

dy

 

 

 

 

 

y

 

 

 

d2 y

 

 

2

d2 y

 

замену

 

 

t x.

 

 

Тогда

имеем

 

dx

 

 

dt

dx

dt

,

 

 

 

 

dx2

 

 

dt2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отсюда

 

из

 

 

 

 

уравнения

 

 

 

 

(5.22)

 

 

 

 

 

 

 

 

 

 

получаем

 

 

 

 

 

уравнение

 

 

 

Бесселя

t2 ytt tyt (t2

2)y 0. Это уравнение при

 

 

нецелом имеет решение

 

 

 

 

 

 

 

 

 

 

y y(x) c1J (t) c2J (t) c1J ( x) c2J ( x),

 

 

 

 

(5.28)

а при

 

– целом, n, – решение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y y(x) c1Jn( x) c2J n( x).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.29)

Используя формулу (5.27), получаем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x

 

J

(x)) x

 

 

 

J

(x) x

 

J

 

(x) x

 

 

 

 

 

 

 

 

 

 

J (x) x

 

 

 

J

 

 

 

(x)

 

 

J (x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

x

 

 

 

 

 

 

x 1J (x) x

 

J

 

 

 

 

(x) x 1J (x) x

 

J

 

 

 

 

 

(x).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, имеем формулу

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x J (x)) x J 1(x).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.30)

113

Отсюда получаем рекуррентную формулу J 1(x) x (x J (x)) .

5.3. Корни бесселевых функций. Интеграл Ломмеля. Пусть даны уравнения

x2u xu ( 2x2 2)u

 

0,

 

x2 y xy ( 2x2

2)y 0

решениями которых,

 

согласно соотношению

 

 

(5.28),

являются

 

функции

 

u J ( x)

и y J ( x).

 

Умножив

 

первое

уравнение

 

на

 

 

 

y

,

 

 

 

 

 

второе

 

 

 

 

 

на

 

 

x

,

получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

2

 

 

 

2uy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2uy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xu y u y

 

 

xuy

 

x

 

0,

 

xy u y u

 

 

xuy

 

 

x

 

 

 

 

 

 

0. Вычитая из первого

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

равенства второе, будем иметь равенство

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)xuy ,

 

 

 

 

 

 

 

(5.31)

 

 

 

 

 

 

 

 

 

 

 

 

x(u y uy

) (u y uy ) (

 

 

 

 

 

 

 

 

 

 

 

 

 

 

которое можно переписать в виде

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

 

)xuy.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.32)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x(u y

uy ))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Поскольку u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J ( x),y

 

 

J ( x), то равенство (5.32) приобретает вид

 

 

 

 

 

 

 

 

( x)J

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( x)))

 

(

2

 

 

2

 

)xJ

( x)J ( x).

 

(5.33)

 

 

(x( J

( x) J ( x)J

 

 

 

 

 

 

 

 

В левую часть этого равенства вместо

 

 

 

 

 

подставим

 

ее значение

(5.33) и

 

J

 

 

 

получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x J ( x)

 

 

 

J ( x)

J

 

( x)

 

J

( x)

 

 

 

 

 

 

J ( x) J

 

 

 

( x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J ( x)J ( x) x J ( x)J 1( x) J ( x)J ( x) x J ( x)J 1( x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x J ( x)J 1( x) x J ( x)J 1( x) .

 

 

 

 

 

 

 

 

 

Отсюда с учетом формулы (5.33) следует

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xJ ( x)J

 

( x)

 

 

 

 

 

 

 

 

J

 

( x)J

1

( x) J

 

( x)J

 

 

( x) .

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Проинтегрировав это равенство от 0 до x, будем иметь формулу

 

 

 

 

 

 

 

 

x

sJ

 

( s)J

 

( s)ds

 

 

 

 

x

 

 

J

 

( x)J

 

 

 

( x) J

 

( x)J

 

( x) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

(5.34)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

которая называется интегралом Ломмеля.

Корни бесселевых функций обладают интересными и важными в приложениях свойствами.

I.Все корни бесселевых функций, кроме x 0, являются простыми.

Всамом деле, допустим, что x0 – корень бесселевой функции имеет кратность

два. Тогда выполняется соотношение J (x0) J (x0) 0. Отсюда следует, что начальная задача Коши для линейного однородного дифференциального уравнения второго порядка при нулевых начальных условиях имеет лишь

114

нулевое решение, т.е.

J (x) 0,

что,

 

конечно,

неверно.

 

Следовательно,

функция J (x)

не может иметь кратных корней, т. е. все ее корни простые.

 

 

 

 

II. Все корни бесселевых функций – действительные числа.

 

 

 

 

 

Действительно, предположим, что

z i

 

является комплексным

корнем

функции J (x), т.е.

 

 

 

 

J (z) 0.

Так

как

 

 

функция

имеет

 

действительные

коэффициенты,

то и число

z

 

i тоже является корнем уравнения J (z) 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

Положив в интеграле Ломмеля z,

z

,

будем иметь sJ (zs)J (

zs)ds

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

zJ (

zx)J

 

(zx)

zJ

(zx)J

 

(

zx) .

 

 

Отсюда

при

 

 

 

x 1

с

 

учетом

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z2

 

z

2

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

2 ds 0, что

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J (z) J (

z

) 0 получаем равенство

sJ (zs)J (

zs)ds s

J (zs)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

невозможно, так как s

 

J (zs)

 

2

0,

если 0 s 1. Противоречие показывает,

что у

 

 

функции J (x)

не может быть комплексных корней.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Корни бесселевых функций J (x)

и J 1(x)

взаимно разделены.

 

 

Между двумя последовательными корнями функции

J (x)

находится ровно

один корень функции

 

J 1(x), и,

 

наоборот,

 

между двумя корнями функции

J 1(x)

находится

один корень

функции

J (x).

Действительно, используя

формулу (5.26) получим соотношение (x 1J

1

(x))

( 1)x J

1

(x) x 1J

 

(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x),

т.е.

1

J 1(x))

1

 

 

( 1)x J

(x) x 1

J

 

 

 

(x)

 

 

J

(x) x 1J

 

(x

 

x

 

 

J (x).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Из этого равенства и равенства (5.32) следует в силу теоремы Ролля, что между двумя последовательными корнями функции J (x) (J 1(x)) имеется корень

функции J 1(x) (J (x)).

IV. Функции J (x) и J 1(x) не имеют общих корней.

Это вытекает из равенства (5.27), так как у функции J (x) все корни простые.

5.4. Ортогональность бесселевых функций. Разложение в ортогональный ряд по бесселевым функциям. Напомним, что система функций { n(x)} называется ортогональной на отрезке [a,b] с весом p(x), если выполнено

b

условие p(x) i (x) j (x)dx 0,i j. Нормой функции n(x)

с весом p(x) будет

a

 

 

1

 

 

 

 

 

b

 

 

 

 

 

 

2

 

 

 

 

число || n || || n(x)||

 

2

 

Пусть i

– корни бесселевой функции

 

p(x) n (x)dx

.

 

a

 

 

 

 

J (x). Рассмотрим систему функций

 

 

 

 

 

 

 

 

{ J ( i

x)},i 1,2,....

 

(5.35)

115

Так как J ( i ) 0, то

из

интеграла Ломмеля следует

равенство

1

 

1

 

sJ ( is)J ( js)ds 0,i j,

или

xJ ( ix)J ( jx)dx 0,i j, из

которого

0

 

0

 

следует, что система бесселевых функций (5.35) ортогональна на отрезке [0,1] с

весом

p(x) x

.

Норма бесселевой функции

 

 

x):

 

 

 

 

 

 

 

1

 

 

 

.

J (

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

|| J (

ix)||

xJ ( ix)dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 1,

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

Положив

в

 

интеграле Ломмеля

получим

 

xJ ( x)J ( x)dx

 

J ( x)J 1( x) J ( x)J 1( x)

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

– корни уравнения J (x) 0,

 

 

 

 

 

 

 

 

 

 

 

. Если

 

 

 

 

 

2 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

то выражение справа в последнем равенстве есть неопределенность типа

0

.

0

Раскроем ее по правилу Лопиталя. Имеем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

2

 

 

 

 

J ( )J 1

( ) J ( )J 1( ) J ( )J 1( )

 

 

 

 

 

 

( x)dx

lim

 

 

 

 

 

lim

 

 

 

 

 

 

xJ

 

 

 

 

2

 

 

 

 

 

J ( )J 1( ),

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

так

 

 

как

J ( ) J ( ) 0.

 

Используя

последовательно

формулы

 

 

(x) J 1(x) J 1(x)

 

 

 

 

 

 

(x), получим, что

 

 

 

 

 

2J

и xJ 1(x) xJ (x) J

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

( ))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xJ ( x)dx

 

limJ

( )(J 1( ) 2J

 

 

 

 

 

02

1limJ ( ) J ( ) J ( ) 2J ( ) 1limJ ( )J ( ) 1(J ( ))2.

2 2 2

Положив в равенстве i , где i – корень функции J (x), получим значение

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

нормы функции J ( i

x): || J ( ix)||

 

 

J ( i ),i 1,2,....

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

Как

выяснено

 

ранее, последовательность

функций

 

 

 

 

 

 

 

 

 

 

1, 2,..., n,... – корни уравнения

 

xJn( 1x),

xJn( 2x),...,

xJn( nx),... , где

 

Jn(x) 0, представляет собой ортогональную систему функций на (0,1).

 

 

Пустьтеперьдана функция f (x), определеннаяна (0,1).

Ее рядФурье–Бесселя

 

 

 

 

 

 

 

 

 

 

 

 

 

 

выписывается в виде

f (x) ak Jn( k x), где коэффициенты ak определяются

 

 

 

 

 

 

 

 

 

 

k 1

 

 

 

 

 

 

 

 

 

2

 

 

1

 

 

 

 

 

по формулам ak

 

 

 

 

x f (x)Jn( k x)dx.

 

(Jn

( k ))

2

 

 

 

 

 

 

0

 

 

 

 

 

116

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]