
- •1.Усилители. Параметры и характеристики.
- •2.Линейные искажения в усилителях.
- •3.Нелинейные искажения в усилителях.
- •4. Переходная характеристика усилителя.
- •5.Амплитудно-фазовая характеристика усилителя.
- •6.Шумы в электронных схемах.
- •7.Расчет рабочей точки стандартных усилительных каскадов на бт.
- •8.Расчет рабочей точки стандартных усилительных каскадов на транзисторе с управляющим переходом.
- •9. Расчёт р.Т. Усилительных каскадов с индуцированным каналом.
- •10. Расчёт р.Т. Усилительных каскадов на транзисторе со встроенным каналом.
- •11. Обратные связи в усилителях.
- •12. Влияние обратных связей на коэффициент усиления.
- •13. Влияние обратной связи на стабильность работы усилителя.
- •14. Термостабилизация в усилительных каскадах.
- •15. Обратная связь в многокаскадных усилителях.
- •16. Однокаскадный усилитель на бт с оэ(Схема).
- •17.Однокоскадный усилитель rc-типа на биполярном транзисторе с общим эмиттером .Анализ параметров по переменному току.
- •18. Однокаскадный усилитель rc-типа на биполярном транзисторе с общим коллектором .Анализ параметров по переменному току.
- •19. Однокаскадный усилитель rc-типа на биполярном транзисторе с общей базой .Анализ параметров по переменному току.
- •20. Усилительный каскад с последовательной оос по напряжению.
- •21.Усилители постоянного тока. Назначение, параметры, основные особенности.
- •22.Методы борьбы с дрейфом нуля. Местные отрицательные обратные связи.
- •23.Методы борьбы с дрейфом нуля. Балансные (мостовые схемы).
- •24.Методы борьбы с дрейфом нуля.Дифференциальный каскад.
- •25. Метод модуляции-демодуляции.
- •26. Комбинированные методы борьбы с дрейфом нуля.
- •27. Операционные усилители.
- •28. Инвертирующий усилитель.
- •29. Неинвертирующий усилитель.
- •30. Применение оу для выполнения нелинейных операций.
- •31. Применение оу для моделирования математических операций.
- •32. Активные фильтры.
- •33 . Электронные ключи. Параметры и характеристики.
- •34 . Ключ на бт. Построение передаточной характеристики.
- •35. Улучшенные схемы ключей на бт.
- •36. Ключ на переключателе тока.
- •37. Ключ на полевых транзисторах.
- •38. Комплиментарный ключ.
- •39. Семейства логических элементов.
- •40. Ттл, ттлш –логика.
- •41. Дтл-логика.
- •42. Эсл-логика.
- •43-44. N-моп логика (элементы типов и-не и или-не).
- •44.P-моп логика.
- •45. Кмоп логика.
- •46. Триггерная ячейка.
- •47.Триггер с раздельными входами.
- •48.Интегральный триггер.
- •49.Rs–триггер.
- •50.Ms-триггер.
- •51.D- , т-триггеры
- •52. Jk-триггеры
- •53. Мультикомплексоры.
- •54.Преобразователи кодов.
- •55. Простейшие коды.
- •56. Усилитель мощности.
52. Jk-триггеры
JK-триггер
имеет два информационных входа: J и
К, а также вход для тактовых импульсов
С. Правило работы JК-триггера
определяется исходя из табл. 2.3.
JК-триггер отличается от синхронного RS-триггера тем, что, во-первых, не имеет запрещенных входных комбинаций и, во-вторых, при комбинации J = K = 1 изменяет свое состояние на противоположное, т. е. работает в режиме Т-триггера. Поскольку JК-триггер обладает свойствами RS- и Т-триггеров, он может быть реализован на основе синхронного двухступенчатого RS-триггера, с входной логикой (рис. 2.7). Одна пара S- и R-входов используется для обратных связей, как в т-триггере. S- и R-входы другой пары служат для приема информации и получают обозначение J и К. Распространенный вариант реализации JК-триггера представлен на рис. 2.8. Нетрудно видеть, что при сигнале С = 1, когда информационные сигналы устанавливают состояние первой ступени, вторая ступень блокирована. При сигнале С = 0, когда первая ступень закрыта для входной информации, вторая ступень, напротив, открывается и воспринимает состояние первой ступени. Примером может служить JК-триггер К155ТВ1, выполненный по рассмотренной схеме. |
|
|
|
Рис. 2.7. JK-триггер |
Рис. 2.8. JK-триггер с входной логикой: а – функциональная схема; б – условное обозначение |
Обычно триггеры имеют один или два установочных входа, которые предназначены для установки триггера в требуемое начальное состояние. Установка осуществляется сигналами, которые поступают, как показано на рис. 2.8, непосредственно на входы RS-триггеров первой и второй ступеней. Если триггеры построены на элементах И–НЕ, то сигналы должны иметь вид отрицательного импульса напряжения между уровнями 1 и 0. Установочные входы получаются инверсными, что отражено на условном обозначении триггера. При реализации триггера на элементах ИЛИ–НЕ установочные входы будут прямыми и для установки триггера в какое-то состояние необходимо на соответствующий вход на короткое время подать сигнал с единичным уровнем. Причем установка производится независимо от наличия или отсутствия синхронизирующего импульса, т. е. является асинхронной.
Триггеры с установочными входами принято называть комбинированными DRS-RSТ-JКRS-триггерами. Часто встречаются триггеры с входной логикой. Примером может служить JК-триггер на рис. 2.8, a. Он имеет по три конъюнктивно связанных входа J и входа К, т. е. в его структуру встроены логические элементы. Такие триггеры необходимы для построения счетчиков с параллельным переносом. На основе JК-триггера можно с помощью внешних соединений его выводов (рис. 2.9) получить триггеры других видов. В этом смысле JК-триггер называют универсальным.
Рис. 2.9. Использование JK-триггера в качестве триггеров других видов: а – TV-триггер и Т-триггер (при V = 1); б – D-триггер; в – DV-триггер; г – RS-триггер
53. Мультикомплексоры.
Mультипле́ксор — устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход. Мультиплексор позволяет передавать сигнал с одного из входов на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов.
Аналоговые и цифровые мультиплексоры значительно различаются по принципу работы. Первые электрически соединяют выбранный вход с выходом (при этом сопротивление между ними невелико — порядка единиц/десятков ом). Вторые же не образуют прямого электрического соединения между выбранным входом и выходом, а лишь «копируют» на выход логический уровень ('0' или '1') с выбранного входа. Аналоговые мультиплексоры иногда называют ключами или коммутаторами. Устройство, противоположное мультиплексору по своей функции, называется демультиплексором. В случае применения аналоговых мультиплексоров (с применением ключей на полевых транзисторах) не существует различия между мультиплексором и демультиплексором; такие устройства могут называться коммутаторами.
Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Коммутатор обслуживает управляющая схема, в которой имеются адресные входы и, как правило, разрешающие (стробирующие).
Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных входов n и числом адресных входов m действует соотношение n=2m, то такой мультиплексор называют полным. Если n<2m, то мультиплексор называют неполным.
Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, то есть могут блокировать действие всего устройства.
В качестве управляющей схемы обычно используется дешифратор. В цифровых мультиплексорах логические элементы коммутатора и дешифратора обычно объединяются.
Обобщённая
схема мультиплексора
Входные логические сигналы Xi поступают на входы коммутатора и через коммутатор передаются на выход Y. На вход управляющей схемы подаются адресные сигналы Ak (от англ.Address). Мультиплексор также может иметь дополнительный управляющий вход E (от англ.Enable), который разрешает или запрещает прохождение входного сигнала на выход Y.
Кроме этого, некоторые мультиплексоры могут иметь выход с тремя состояниями: два логических состояния 0 и 1, и третье состояние — отключённый выход (высокоимпедансное состояние, Z-состояние — выходное сопротивление равно бесконечности). Перевод мультиплексора в третье состояние производится снятием управляющего сигнала OE (отангл.Output Enable).
Мультиплексоры могут использоваться в делителях частоты,триггерныхустройствах, сдвигающих устройствах и др. Мультиплексоры могут использоваться для преобразования параллельногодвоичного кодав последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и заканчивая последним.