
- •Взаимная индукция. Трансформаторы
- •Вынужденные колебания. Резонанс
- •Гармонические колебания и их характеристики. Дифференциальное уравнение. Скорость, ускорение, энергия механических гармонических колебаний.
- •Гармонический осциллятор. Пружинный, математический и физический маятники.
- •Диэлектрики. Электрический диполь. Поляризация диэлектрика.
- •Закон Ампера. Взаимодействие параллельных токов. Магнитная постоянная.
- •Закон Ома для однородных и неоднородных участков цепи. Правила Кирхгофа.
- •22.Закон Ома для неоднородного участка цепи. Правила Кирхгофа.
- •Индуктивность. Самоиндукция. Токи при замыкании и размыкании цепи.
- •Конденсаторы. Соединение конденсаторов.
- •Магнитное поле движущегося заряда. Сила Лоренца. Движение заряда в магнитном поле.
- •Магнитное поле на границе двух сред.
- •Магнитное поле тороида и соленоида. Энергия магнитного поля соленоида.
- •Магнитное поле. Магнитная индукция. Закон Био-Савара-Лапласа.
- •Магнитные моменты атомов и электронов. Диа- и парамагнетики.
- •Намагниченность. Магнитное поле в веществе.
- •Основы теории Максвелла для электромагнитного поля.
- •Поляризованность (вектор поляризации). Сегнетоэлектрики.
- •Потенциал. Разность потенциалов.
- •Единица разности потенциалов
- •Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.
- •Проводники в электростатическом поле. Электроемкость уединенного проводника.
- •Работа и мощность тока. Закон Джоуля-Ленца.
- •Работа по перемещению проводника и контура в магнитном поле.
- •Работа сил электрического поля при перемещении зарядов. Циркуляция вектора напряженности.
- •Сторонние силы. Электродвижущая сила, напряжение и разность потенциалов.
- •Теорема Остроградского-Гаусса для электростатического поля в вакууме.
- •Условия на границе раздела двух диэлектрических сред.
- •Ферромагнетики. Магнитный гистерезис.
- •Циркуляция вектора магнитной индукции. Магнитный момент кругового тока.
- •Электрические заряды. Закон сохранения электрического заряда. Закон Кулона.
- •Электрический ток. Сопротивление проводников. Закон Ома.
- •18. Электрический ток. Сила и плотность тока.
- •20. Закон Ома. Сопротивление проводников.
- •Электрическое поле. Напряженность электростатического поля. Принцип суперпозиции. Поток вектора напряженности электростатического поля.
- •2.Напряженность электрического поля. Принцип суперпозиции.
- •Электрическое смещение. Теорема Остроградского-Гаусса для поля в диэлектрике.
- •Электромагнитная индукция. Правило Ленца. Закон Фарадея.
- •Элементы классической теории электропроводности в металлах.
- •Энергия электрического поля, системы зарядов, уединенных проводников, конденсаторов.
Потенциал. Разность потенциалов.
Потенциал
электростатического поля — скалярная
величина, равная отношению потенциальной
энергии заряда в поле к этому заряду:
- энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.
- следствие принципа суперпозиции полей (потенциалы складываются алгебраически).
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.
В
СИ потенциал измеряется в вольтах:
Разность потенциалов
Напряжение — разность значений потенциала в начальной и конечной точках траектории.
Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.
Разность потенциалов (напряжение) не зависит от выбора
системы координат!
Единица разности потенциалов
напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).
Из этого соотношения видно:
1. Вектор напряженности направлен в сторону уменьшения потенциала.
2. Электрическое поле существует, если существует разность потенциалов.
3.
Единица напряженности:
-Напряженность
поля равна
Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.
Потоком
вектора магнитной индукции (магнитным
потоком)
через площадку dS
называется
скалярная
физическая величина, равная
Поток
вектора магнитной индукции
Фв
через произвольную поверхность S
равен
Теорема Гаусса для поля В: поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:
полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,
Проводники в электростатическом поле. Электроемкость уединенного проводника.
Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действовать электростатическое поле, в результате чего они начнут перемещаться. Перемещение зарядов (ток) продолжается до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напряженность поля во всех точках внутри проводника равна нулю:
Е = 0.
По
гауссу
Величину
С = Q/ф
называют электроемкостью (или просто емкостью) уединенного проводника. Емкость уединенного проводника определяется зарядом, сообщение которого проводнику изменяет его потенциал на единицу.
Емкость проводника зависит от его размеров и формы, но не зависит от материала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциала. Сказанное не противоречит формуле, так как она лишь показывает, что емкость уединенного проводника прямо пропорциональна его заряду и обратно пропорциональна потенциалу.
Единица электроемкости — фарад (Ф): 1Ф