- •2) Многолучевая интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.
- •3) Длина волны де Бройля. Опытное обоснование корпускулярно-волнового дуализма. Соотношение неопределенностей Гейзенберга.
- •2) Дифракция в параллельных лучах (дифракция Фраунгофера). Дифракция Фраунгофера на одной щели.
- •3) Уравнение Шредингера. Собственные функции и собственные значения. Стационарное уравнение Шредингера. Квантово-механическое представление свободно движущейся частицы.
- •2) Дифракция Фраунгофера на системе щелей. Дифракционная решетка.
- •3) Квантовые свойства света. Эффект Комптона и его теория.
- •2) Дифракционная решетка. Дифракционные спектры. Дисперсия и разрешающая способность решетки. Критерий разрешения Рэлея.
- •3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное излучение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна.
- •2) Естественный и поляризованный свет. Поляризация при отражении и преломлении света на границе двух диэлектрических сред. Закон Брюстера.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества. Лазеры.
- •2) Поляризация света. Закон Малюса. Естественная анизотропия. Поляризационные приборы. Призма Николя.
- •3) Строение атомного ядра. Энергия связи, ядерные силы. Основные характеристики атомного ядра.
- •2) Поляризация света. Искусственная анизотропия. Эффекты Керра и Фарадея.
- •3) Элементарные частицы и античастицы. Виды взаимодействия частиц и их объединения в рамках единой теории. Кварки. Систематика элементарных частиц.
- •2) Гипотеза де Бройля. Опыты по дифракции электронов. Длина волны де Бройля.
- •3) Электромагнитная природа света. Понятие о когерентности. Сложение колебаний. Временная и пространственная когерентность.
- •2) Интерференция света. Длина и время когерентности. Оптическая длина пути и оптическая разность хода лучей. Способы получения интерференционных картин.
- •3) Волновые свойства частиц. Соотношение неопределенности Гейзенберга. Уравнение Шредингера.
- •2) Интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.
- •3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное поглощение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна
- •2) Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенности). Лазеры.
- •2) Дифракция света. Дифракция Френеля от диска и круглого отверстия. Зонная пластинка. Характерные области дифракции света.
- •3) Строение атомного ядра. Основные характеристики атомного ядра. Энергия связи, ядерные силы.
- •2) Дифракция Фраунгофера на нескольких щелях. Дифракционная решетка.
- •3) Уравнение Шредингера. Квантомеханическое описание частицы в бесконечно глубокой прямоугольной потенциальной яме.
- •2) Дифракционная решетка. Дифракционные спектры. Дисперсия и разрешающая способность решетки.
- •3) Тепловое излучение. Основные характеристики теплового излучения. Абсолютно черное тело. Законы теплового излучения. Распределение энергии в спектре излучения абсолютно черного тела.
- •3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (законы Стефана-Больцмана, Вина, формула Рэлея-Джинса).
- •2) Поляризация света. Закон Малюса. Естественная анизотропия. Поляризационные приборы. Призма Николя.
- •3) Квантовые свойства света. Опыт Боте. Энергия, масса и импульс фотона. Давление света. Опыты Лебедева.
- •2) Сложение поляризованных колебаний. Четвертьволновые и полуволновые пластинки.
- •3) Атомные спектры. Сериальные формулы. Опыты по рассеянию альфа-частиц (опыты Резерфорда).
- •2) Поляризация света. Искусственная анизотропия. Эффект Керра, эффект Фарадея.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенностей). Лазеры. Рубиновый и гелий-неоновый.
- •2) Квантовые свойства света. Опыт Боте. Энергия, масса и импульс фотона. Внешний фотоэффект. Красная граница фотоэффекта.
- •3) Закономерности в атомных спектрах. Сериальные формулы. Понятия головной линии и границы серии. Постулаты Бора.
- •2) Дифракция рентгеновских лучей на кристаллических структурах. Формула Вульфа-Брегга. Исследования строения кристаллов.
- •3) Естественная и искусственная радиоактивность. Закон радиоактивного распада. Активность радиоактивного препарата, период полураспада, среднее время жизни.
- •2) Двойное лучепреломление. Одноосные кристаллы. Поляроиды и поляризационные призмы. Анализ поляризованного света.
- •3) Строение атома. Характеристические рентгеновские спектры. Закон Мозли.
- •2) Оптическая активность. Вращение плоскости поляризации. Эффект Фарадея.
- •3) Естественная радиоактивность. Альфа- и бета-распады, их закономерности. Закон радиоактивного распада.
- •2) Электромагнитная природа света. Сложение световых волн, понятие о когерентности. Интерференция света. Расчет интерференционной картины от двух источников.
- •3) Ядерные реакции. Реакции деления и синтеза. Цепная реакция. Законы сохранения в ядерных реакциях.
- •2) Интерференция в тонких пленках. Изменение фазы волны при отражении. Полосы равной толщины и равного наклона
- •3) Элементарные частицы и античастицы. Виды взаимодействия частиц. Кварки. Систематика элементарных частиц.
- •2) Дифракция ренгеновских лучей на пространственной решетке. Формула Вульфа-Брегга. Исследование структуры кристаллов.
- •3) Тепловое излучение. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.
- •2) Интерференция света. Пространственная и временная когерентность. Оптическая длина пути и оптическая разность хода. Способы наблюдения интерференционных картин.
- •3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (закон Стефана-Больцмана, Вина, Рэлея-Джинса).
- •2) Элементарная Боровская теория водородного атома.
- •3) Закон радиоактивного распада. Активность, период полураспада. Среднее время жизни.
- •2) Оптическая активность. Вращение плоскости поляризации. Эффект Фарадея.
- •3) Квантовые свойства света. Тормозное рентгеновское излучение. Коротковолновая граница сплошного рентгеновского спектра.
- •2) Дифракция Фраунгофера на одной щели. Распределение интенсивности света при дифракции на щели. Влияние ширины щели на дифракционную картину.
- •3) Квантовые свойства света. Эффект Комптона и его теория. Законы сохранения импульса и энергии в эффекте Комптона.
2) Гипотеза де Бройля. Опыты по дифракции электронов. Длина волны де Бройля.
Волновые свойства частиц. Гипотеза де Бройля
де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами.
Согласно де Бройлю, с каждым микрообъектом связаны, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота n и длина волны l.
Корпускулярные и
волновые характеристики микрообъектов
связаны такими же количественными
соотношениями, как и у фотона:
![]()
Гипотеза де Бройля постулировала эти соотношения для всех микрочастиц, в том числе и для таких, которые обладают массой m. Любой частице, обладающей импульсом, сопоставлялся волновой процесс с длиной волны n = h / p.
На первом удачном эксперименте было обнаружено, что пучок электронов, рассеивающийся на кристалле никеля, дает отчетливую дифракционную картину, подобную той, которая возникает при рассеянии на кристалле коротковолнового рентгеновского излучения.
Впоследствии дифракционные явления были обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. своих экспериментах Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота. Упрощенная схема опытов Дж. Томсона по дифракции электронов. K – накаливаемый катод, A – анод, Ф – фольга из золота.
3) Электромагнитная природа света. Понятие о когерентности. Сложение колебаний. Временная и пространственная когерентность.
В основе этой теории лежат уравнения Максвелла:
г
де
E и
H
- векторы напряженности электрического
и магнитного полей, D
и H-
векторы электрической и магнитной
индукции, j-
вектор тока проводимости, ε и μ -
относительные элек-трическая и магнитная
проницаемости, ε0
и μ0
- электрическая
и магнитная постоянные.
Электромагнитные волны Максвелла были обнаружены Г.Герцем и исследованы на опыте. Колебания возбуждались вибратором, состоящим из двух цинковых шариков, разделенных искровым промежутком. Было показано, что возбуждаемые волны являются поперечными и обнаруживают явления дифракции, поляризации, интерференции.
Что касается отличий, существующих между электромагнитными волнами, обнаруженными Герцем, и световыми, то они могут быть объяснены только отличием длин волн. Можно было утверждать, что явления оптические представляют собой частный случай более общего класса электромагнитных явлений. Видимый свет, непосредственно воспринимаемый человече-ским глазом, занимает узкий интервал длин электромагнитных волн от 0,40 до 0,76 мкм.
Два колебательных процесса называются когерентными, если разность фаз складывающихся колебаний остается постоянной в течение времени, достаточного для наблюдений.
Пусть в некоторой точке пространства складываются две
световые волны E1 и E2 одинаковой частоты с амплитудами E01 и E02, причем векторы E1 и E2 колеблются в одной плоскости:
.В
теории колебаний показывается, что
результирующее колебание
имеет
ту же частоту, а амплитуда и фаза
определяются из соотношений:
,
.
где Δϕ=ϕ1-ϕ2 - разность фаз складывающихся колебаний.
Вычислим усредненную интенсивность I световых колебаний в данной точке пространства за время τ, достаточное для наблюдений (много больше периода колебаний)
![]()
Если за время τ Е01 и Е02 сохраняются постоянными, то
![]()
1.Если разность фаз постоянна во времени, то
![]()
а так как I∼<E2> и Δϕ величина постоянная то I0 ≠ I1+I2.
2. Если Δϕ меняется во времени случайным образом, а время наблюдения τ много больше среднего периода изменения разности фаз, то
Тогда I0
= I1+I2
Это
наблюдается при сложении некогерентных
колебаний.
Временная когерентность. Продолжительность процесса излучения света атомами τ =10-8 с. За этот промежуток времени возбужденный атом, растратив свою избыточную энергию на излучение, возвращается в основное состояние, и излучение им света прекращается. Затем вследствие столкновения с другими атомами, электронами или фотонами атом снова может возбудиться и начать излучать свет. Такое прерывистое излучение света атомами в виде отдельных кратковременных импульсов - цугов волн - характерно для любого источника света, независимо от тех физических процессов, которые происходят в источнике.
Пространственная когерентность. Во всех практических интерференционных схемах большое значение имеет размер когерентных источников света. Если размеры когерентных источников много меньше длины волны, то всегда получается резкая интерференционная картина. Однако на практике размеры источников обычно много больше длины световой волны. В этом случае, по существу, на экране имеется наложение множества интерференционных картин, полученных от множества пространственно разделенных пар точечных когерентных источников света, на которые можно разбить исходные протяженные источники. Эти картины будут сдвинуты одна относительно другой так, что результирующая картина будет размыта, и при большом размере источников она практически исчезает.
Билет №9.
