
- •2) Многолучевая интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.
- •3) Длина волны де Бройля. Опытное обоснование корпускулярно-волнового дуализма. Соотношение неопределенностей Гейзенберга.
- •2) Дифракция в параллельных лучах (дифракция Фраунгофера). Дифракция Фраунгофера на одной щели.
- •3) Уравнение Шредингера. Собственные функции и собственные значения. Стационарное уравнение Шредингера. Квантово-механическое представление свободно движущейся частицы.
- •2) Дифракция Фраунгофера на системе щелей. Дифракционная решетка.
- •3) Квантовые свойства света. Эффект Комптона и его теория.
- •2) Дифракционная решетка. Дифракционные спектры. Дисперсия и разрешающая способность решетки. Критерий разрешения Рэлея.
- •3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное излучение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна.
- •2) Естественный и поляризованный свет. Поляризация при отражении и преломлении света на границе двух диэлектрических сред. Закон Брюстера.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества. Лазеры.
- •2) Поляризация света. Закон Малюса. Естественная анизотропия. Поляризационные приборы. Призма Николя.
- •3) Строение атомного ядра. Энергия связи, ядерные силы. Основные характеристики атомного ядра.
- •2) Поляризация света. Искусственная анизотропия. Эффекты Керра и Фарадея.
- •3) Элементарные частицы и античастицы. Виды взаимодействия частиц и их объединения в рамках единой теории. Кварки. Систематика элементарных частиц.
- •2) Гипотеза де Бройля. Опыты по дифракции электронов. Длина волны де Бройля.
- •3) Электромагнитная природа света. Понятие о когерентности. Сложение колебаний. Временная и пространственная когерентность.
- •2) Интерференция света. Длина и время когерентности. Оптическая длина пути и оптическая разность хода лучей. Способы получения интерференционных картин.
- •3) Волновые свойства частиц. Соотношение неопределенности Гейзенберга. Уравнение Шредингера.
- •2) Интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.
- •3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное поглощение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна
- •2) Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенности). Лазеры.
- •2) Дифракция света. Дифракция Френеля от диска и круглого отверстия. Зонная пластинка. Характерные области дифракции света.
- •3) Строение атомного ядра. Основные характеристики атомного ядра. Энергия связи, ядерные силы.
- •2) Дифракция Фраунгофера на нескольких щелях. Дифракционная решетка.
- •3) Уравнение Шредингера. Квантомеханическое описание частицы в бесконечно глубокой прямоугольной потенциальной яме.
- •2) Дифракционная решетка. Дифракционные спектры. Дисперсия и разрешающая способность решетки.
- •3) Тепловое излучение. Основные характеристики теплового излучения. Абсолютно черное тело. Законы теплового излучения. Распределение энергии в спектре излучения абсолютно черного тела.
- •3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (законы Стефана-Больцмана, Вина, формула Рэлея-Джинса).
- •2) Поляризация света. Закон Малюса. Естественная анизотропия. Поляризационные приборы. Призма Николя.
- •3) Квантовые свойства света. Опыт Боте. Энергия, масса и импульс фотона. Давление света. Опыты Лебедева.
- •2) Сложение поляризованных колебаний. Четвертьволновые и полуволновые пластинки.
- •3) Атомные спектры. Сериальные формулы. Опыты по рассеянию альфа-частиц (опыты Резерфорда).
- •2) Поляризация света. Искусственная анизотропия. Эффект Керра, эффект Фарадея.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенностей). Лазеры. Рубиновый и гелий-неоновый.
- •2) Квантовые свойства света. Опыт Боте. Энергия, масса и импульс фотона. Внешний фотоэффект. Красная граница фотоэффекта.
- •3) Закономерности в атомных спектрах. Сериальные формулы. Понятия головной линии и границы серии. Постулаты Бора.
- •2) Дифракция рентгеновских лучей на кристаллических структурах. Формула Вульфа-Брегга. Исследования строения кристаллов.
- •3) Естественная и искусственная радиоактивность. Закон радиоактивного распада. Активность радиоактивного препарата, период полураспада, среднее время жизни.
- •2) Двойное лучепреломление. Одноосные кристаллы. Поляроиды и поляризационные призмы. Анализ поляризованного света.
- •3) Строение атома. Характеристические рентгеновские спектры. Закон Мозли.
- •2) Оптическая активность. Вращение плоскости поляризации. Эффект Фарадея.
- •3) Естественная радиоактивность. Альфа- и бета-распады, их закономерности. Закон радиоактивного распада.
- •2) Электромагнитная природа света. Сложение световых волн, понятие о когерентности. Интерференция света. Расчет интерференционной картины от двух источников.
- •3) Ядерные реакции. Реакции деления и синтеза. Цепная реакция. Законы сохранения в ядерных реакциях.
- •2) Интерференция в тонких пленках. Изменение фазы волны при отражении. Полосы равной толщины и равного наклона
- •3) Элементарные частицы и античастицы. Виды взаимодействия частиц. Кварки. Систематика элементарных частиц.
- •2) Дифракция ренгеновских лучей на пространственной решетке. Формула Вульфа-Брегга. Исследование структуры кристаллов.
- •3) Тепловое излучение. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.
- •2) Интерференция света. Пространственная и временная когерентность. Оптическая длина пути и оптическая разность хода. Способы наблюдения интерференционных картин.
- •3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (закон Стефана-Больцмана, Вина, Рэлея-Джинса).
- •2) Элементарная Боровская теория водородного атома.
- •3) Закон радиоактивного распада. Активность, период полураспада. Среднее время жизни.
- •2) Оптическая активность. Вращение плоскости поляризации. Эффект Фарадея.
- •3) Квантовые свойства света. Тормозное рентгеновское излучение. Коротковолновая граница сплошного рентгеновского спектра.
- •2) Дифракция Фраунгофера на одной щели. Распределение интенсивности света при дифракции на щели. Влияние ширины щели на дифракционную картину.
- •3) Квантовые свойства света. Эффект Комптона и его теория. Законы сохранения импульса и энергии в эффекте Комптона.
2) Поляризация света. Искусственная анизотропия. Эффект Керра, эффект Фарадея.
Поляризованным называется свет, у которого колебания вектора напряженности электрического поля Е - светового вектора упорядочены. Для поляризованного света различные направления в плоскости, перпендикулярной световому лучу, неэквивалентны. Такая неэквивалентность существует только для поперечных волн. Продольные волны не имеют поляризации.
Существуют три типа поляризации света: линейная, циркулярная (круговая) и эллиптическая. Кроме того, свет может быть неполяризованным и частично поляризованным
Линейно (плоско) поляризованной называется волна, вектор E которой в процессе распространения колеблется в одной плоскости, проходящей через луч. Естественным называется свет с быстро и беспорядочно изменяющимся направлением вектора напряженности электрического поля, причем все направления колебаний, будучи перпендикулярными световому лучу, равновероятны. Рис.4.3
Волна называется эллиптически поляризованной, если при фиксированном значении координаты z (координаты, вдоль которой волна распространяется) конец вектора E в плоскости с течением времени описывает эллипс.
Искусственная
анизотропия проявляется в возникновении
двулучепреломления в первоначально
изотропных средах при внешних
воздействиях. Оптически изотропное
тело при деформациях сжатия и растяжения
приобретает свойство кристалла,
оптическая ось которого коллинеарна
с направлением деформирующих сил При
распространении перпендикулярно
оптической оси линейно поляризованная
волна разбивается на две - обыкновенную
и необыкновенную, разность показателей
преломления для которых равна
где F -деформирующая сила, S – площадь
боковой поверхности, b - упруго-оптическая
постоянная. На выходе из такого вещества
свет в общем случае становится
эллиптически поляризованным.Эффект
Керра. Оптически
изотропное вещество в электрическом
поле напряженностью Е
приобретает
свойство одноосного кристалла с
оптической осью, коллинеарной вектору
напряженности электрического поля.
Разность показателей преломления для
обыкновенной и необыкновенной волн
равна:
гдеk-
постоянная Керра, λ- длина волны. На
выходе из вещества свет в общем случае
становится эллиптически поляриз.
Эффект Фарадея заключается в том, что в магнитном поле первоначально неактивное вещество становится оптически активным. При распространении света в веществе вдоль вектора напряженности магнитного поля плоскость поляризации световой волны вращается.
Угол
поворота плоскости поляризации равенгде V постоянная Верде.
3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенностей). Лазеры. Рубиновый и гелий-неоновый.
При прохождении
света через среду осуществляется обмен
квантами между пучком света и атомами
среды посредством поглощения и испускания
фотонов Пусть свет частоты ν
распространяется вдоль оси Z через
среду, в которой концентрации атомов
на верхнем и нижнем уровнях равны
соответственно N1
и NТогда
интенсивность пучка определяется
законом Бугера: I(z)= I0 eα z
z,
где - коэффициент Эйнштейна, V
- скорость
света в среде, I0=I(0).
В состоянии термодинамического
равновесия концентрации атомов,
обладающих энергией Ei,
описываются распределением Больцмана.
Поэтому населенность уровня с более
высокой энергией должна быть меньше,
чем с низкой. Поскольку E1>E0,
, то в этом случае N1<N0,
т.е. α<0 и плотность по тока по мере
прохождения света уменьшается. Случай
α<0 соответствует поглощению света
средой.
Если привести систему атомов в неравновесное состояние, когда N1>N0, то выполнится условие α>0, и среда будет не поглощать, а усиливать излучение. Состояние среды, при котором N1>N0, называется состоянием с инверсной населенностью. Привести систему в неравновесное состояние можно при помощи внешних воздействий, например светового пучка, вызывающего вынужденные переходы(для систем с колличеством уровней большим 2х).
Лазеры имеют целый ряд преимуществ по сравнению с не-лазерными источниками света. Излучение лазера когерентно, то есть фотоны, излучаемые лазером, идентичны по фазе, амплиту-де, направлению распространения. Поэтому оно монохроматич-но, может иметь очень высокую интенсивность и узкую направ-ленность.
Рубиновый лазер. Рубиновый лазер работает в импульсном режиме, в качестве источника накачки используется мощная лампа-вспышка с широким спектром излучения
Гелий-неоновый лазер. Инверсия населенности в гелий-неоновом лазере достигается при помощи газового разряда. В газовом разряде электроны ускоряются электрическим полем, сталкиваются с атомами и ионизуют их, вызывая появление вторичных электронов, которые в свою очередь также ускоряются, и т. д. Часть атомов при столкновениях не ионизуется, а возбуждается. При определенных условиях доля возбужденных атомов может оказаться столь вели-ка, что возникнет инверсия населенности.
Билет №20