
- •2) Многолучевая интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.
- •3) Длина волны де Бройля. Опытное обоснование корпускулярно-волнового дуализма. Соотношение неопределенностей Гейзенберга.
- •2) Дифракция в параллельных лучах (дифракция Фраунгофера). Дифракция Фраунгофера на одной щели.
- •3) Уравнение Шредингера. Собственные функции и собственные значения. Стационарное уравнение Шредингера. Квантово-механическое представление свободно движущейся частицы.
- •2) Дифракция Фраунгофера на системе щелей. Дифракционная решетка.
- •3) Квантовые свойства света. Эффект Комптона и его теория.
- •2) Дифракционная решетка. Дифракционные спектры. Дисперсия и разрешающая способность решетки. Критерий разрешения Рэлея.
- •3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное излучение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна.
- •2) Естественный и поляризованный свет. Поляризация при отражении и преломлении света на границе двух диэлектрических сред. Закон Брюстера.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества. Лазеры.
- •2) Поляризация света. Закон Малюса. Естественная анизотропия. Поляризационные приборы. Призма Николя.
- •3) Строение атомного ядра. Энергия связи, ядерные силы. Основные характеристики атомного ядра.
- •2) Поляризация света. Искусственная анизотропия. Эффекты Керра и Фарадея.
- •3) Элементарные частицы и античастицы. Виды взаимодействия частиц и их объединения в рамках единой теории. Кварки. Систематика элементарных частиц.
- •2) Гипотеза де Бройля. Опыты по дифракции электронов. Длина волны де Бройля.
- •3) Электромагнитная природа света. Понятие о когерентности. Сложение колебаний. Временная и пространственная когерентность.
- •2) Интерференция света. Длина и время когерентности. Оптическая длина пути и оптическая разность хода лучей. Способы получения интерференционных картин.
- •3) Волновые свойства частиц. Соотношение неопределенности Гейзенберга. Уравнение Шредингера.
- •2) Интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.
- •3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное поглощение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна
- •2) Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенности). Лазеры.
- •2) Дифракция света. Дифракция Френеля от диска и круглого отверстия. Зонная пластинка. Характерные области дифракции света.
- •3) Строение атомного ядра. Основные характеристики атомного ядра. Энергия связи, ядерные силы.
- •2) Дифракция Фраунгофера на нескольких щелях. Дифракционная решетка.
- •3) Уравнение Шредингера. Квантомеханическое описание частицы в бесконечно глубокой прямоугольной потенциальной яме.
- •2) Дифракционная решетка. Дифракционные спектры. Дисперсия и разрешающая способность решетки.
- •3) Тепловое излучение. Основные характеристики теплового излучения. Абсолютно черное тело. Законы теплового излучения. Распределение энергии в спектре излучения абсолютно черного тела.
- •3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (законы Стефана-Больцмана, Вина, формула Рэлея-Джинса).
- •2) Поляризация света. Закон Малюса. Естественная анизотропия. Поляризационные приборы. Призма Николя.
- •3) Квантовые свойства света. Опыт Боте. Энергия, масса и импульс фотона. Давление света. Опыты Лебедева.
- •2) Сложение поляризованных колебаний. Четвертьволновые и полуволновые пластинки.
- •3) Атомные спектры. Сериальные формулы. Опыты по рассеянию альфа-частиц (опыты Резерфорда).
- •2) Поляризация света. Искусственная анизотропия. Эффект Керра, эффект Фарадея.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенностей). Лазеры. Рубиновый и гелий-неоновый.
- •2) Квантовые свойства света. Опыт Боте. Энергия, масса и импульс фотона. Внешний фотоэффект. Красная граница фотоэффекта.
- •3) Закономерности в атомных спектрах. Сериальные формулы. Понятия головной линии и границы серии. Постулаты Бора.
- •2) Дифракция рентгеновских лучей на кристаллических структурах. Формула Вульфа-Брегга. Исследования строения кристаллов.
- •3) Естественная и искусственная радиоактивность. Закон радиоактивного распада. Активность радиоактивного препарата, период полураспада, среднее время жизни.
- •2) Двойное лучепреломление. Одноосные кристаллы. Поляроиды и поляризационные призмы. Анализ поляризованного света.
- •3) Строение атома. Характеристические рентгеновские спектры. Закон Мозли.
- •2) Оптическая активность. Вращение плоскости поляризации. Эффект Фарадея.
- •3) Естественная радиоактивность. Альфа- и бета-распады, их закономерности. Закон радиоактивного распада.
- •2) Электромагнитная природа света. Сложение световых волн, понятие о когерентности. Интерференция света. Расчет интерференционной картины от двух источников.
- •3) Ядерные реакции. Реакции деления и синтеза. Цепная реакция. Законы сохранения в ядерных реакциях.
- •2) Интерференция в тонких пленках. Изменение фазы волны при отражении. Полосы равной толщины и равного наклона
- •3) Элементарные частицы и античастицы. Виды взаимодействия частиц. Кварки. Систематика элементарных частиц.
- •2) Дифракция ренгеновских лучей на пространственной решетке. Формула Вульфа-Брегга. Исследование структуры кристаллов.
- •3) Тепловое излучение. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.
- •2) Интерференция света. Пространственная и временная когерентность. Оптическая длина пути и оптическая разность хода. Способы наблюдения интерференционных картин.
- •3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (закон Стефана-Больцмана, Вина, Рэлея-Джинса).
- •2) Элементарная Боровская теория водородного атома.
- •3) Закон радиоактивного распада. Активность, период полураспада. Среднее время жизни.
- •2) Оптическая активность. Вращение плоскости поляризации. Эффект Фарадея.
- •3) Квантовые свойства света. Тормозное рентгеновское излучение. Коротковолновая граница сплошного рентгеновского спектра.
- •2) Дифракция Фраунгофера на одной щели. Распределение интенсивности света при дифракции на щели. Влияние ширины щели на дифракционную картину.
- •3) Квантовые свойства света. Эффект Комптона и его теория. Законы сохранения импульса и энергии в эффекте Комптона.
3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (законы Стефана-Больцмана, Вина, формула Рэлея-Джинса).
Тепловое излучение. Тела, нагреты до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым излучением. Тепловое излучение является самым распространенным в природе, совершается за счет энерги теплового движения атомов и молекул в-ва (т.е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких – преимущественно длинные (инфракрасные). Тепловое излучение – практически единственный тип излучения, который может быть равновесным. Предположим, что нагретое тело помещено в полость, ограниченное идеально отражающей оболочкой. С течением времени, в р-тате непрерывного обмена энергией между телом и излучением, наступит равновесие, т.е. тело в единицу времени будет поглощать столько же сколько и излучать.
Законы теплового излучения абсолютно черного тела (Закон Стефана Больцмана). Тело наз-ся черным (абсолютно черным), если оно при любой температуре полностью поглощает всю энергию падающих на него электромагнитных волн независимо от их частоты, поляризации (упорядочивания светового в-ра) и направления распространения. Следовательно, коэф-т поглощения абсолютно черного тела (АЧТ) тождественно равен единице. Спектральная плотность энергетической светимости АТЧ зависит только от частоты νизлучения и термодинамической температуры Т тела. Закон Кирхгофа: Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности н.з. от природы тела; оно является для всех тел универсальной ф-цией частоты.
(длины волны) и
температуры:.
Для
черного тела, поэтому из закона К.
вытекает, чтоля
черного тела равна
Таким образом,
универсальная функция Кирхгофаесть
не что иное, как спектральная
плотность энергетической светимости черного тела. Энергетическая светимость АТЧ зависит только от температуры, т.е. Энергетическая светимость АТЧ пропорциональна четвертой степени его термодинамической температуры:
, где σ-- постоянная
Больцмана. Этот
закон – закон Стефана-Больцмана.
следствие ф-лы Планка. Согласно квантово теории Планка, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями -- квантами, причем энергия ванта пропорциональна частоте колебания
постоянная Планка.
Т.к.излучение
испускается порциями, то энергия
осциллятора (стоячей волны) εможет
принимать лишь определенные дискретные
значения, кратные целому числу эл-тарн
порций энергии
Ф-ла Планка (нахождение универсальной
функции Кирхгофа):
спектральные плотности энергетической светимости ЧТ, X — длина волны, (О — круговая частота, с - скорость света в вакууме, к -постоянная Больцмана, Т - термодинамическая температура, h - постоянная Планка, % — постоянная Планка, дел. на 2ж =
1.05 • 1(Г34 Дж ■ с . Следствие: если
Планка следует ф-ла Релея-Джинса:
. В области больших
частот
и
единицей в знаметеле.
тогда получим ф-лу
эта ф-ла совпадает с флой
,
причем
40. Закон Вина.
Опираясь на законы термо- и электродинамики,
Вин установил зависимость длины волны
λmax , соответствующей максимуму функции
rλ,T , от температуры Т. Согласно закону
смещения Вина,
Т.е. длина волны Лтах , соответствующая
максимальному значению спектральной плотности энергетической светимости ЧТ, обратно пропорциональна его термодинамической температуре, b—постоянная
Вина = 2.9-10- м-К . Закон Вина - закон смещения т.к. он показывает смещение положения максимума функции Гд j по мере
возрастания температуры в область коротких длин волн. Он объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение.
Формула Релея-Джинса. Попытка теоретического вывода зависимости универсальной функции Кирхгофа. В данном случае был применен закон равномерного распределения энергии по степеням свободы. Формула Релея-Джинса для спектральной плотности энергетической светимости имеет ви
, где
–
средняя энергия
осциллятора с собственной частотой ν.
Для осциллятора, совершающего колебания, средние значения кинетической и потенциальн энергий одинаковы, поэтому средняя степень каждой колебательной степени свободы
согласуется с
экспериментальными данными только в област достаточно малых частот и больших температу В области больших частот она резко с ними расходится. Если попытаться получить закон Стефана-Больцмана, то получается абсурд, т.к. вычисленная с использованием ф-лы Р.-Д. энергетическая светимость черного тела
в то время как по
з. Стеф.-Больц. Re пропорциональна
четвертой степени температуры.
Билет №17