- •2) Многолучевая интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.
- •3) Длина волны де Бройля. Опытное обоснование корпускулярно-волнового дуализма. Соотношение неопределенностей Гейзенберга.
- •2) Дифракция в параллельных лучах (дифракция Фраунгофера). Дифракция Фраунгофера на одной щели.
- •3) Уравнение Шредингера. Собственные функции и собственные значения. Стационарное уравнение Шредингера. Квантово-механическое представление свободно движущейся частицы.
- •2) Дифракция Фраунгофера на системе щелей. Дифракционная решетка.
- •3) Квантовые свойства света. Эффект Комптона и его теория.
- •2) Дифракционная решетка. Дифракционные спектры. Дисперсия и разрешающая способность решетки. Критерий разрешения Рэлея.
- •3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное излучение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна.
- •2) Естественный и поляризованный свет. Поляризация при отражении и преломлении света на границе двух диэлектрических сред. Закон Брюстера.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества. Лазеры.
- •2) Поляризация света. Закон Малюса. Естественная анизотропия. Поляризационные приборы. Призма Николя.
- •3) Строение атомного ядра. Энергия связи, ядерные силы. Основные характеристики атомного ядра.
- •2) Поляризация света. Искусственная анизотропия. Эффекты Керра и Фарадея.
- •3) Элементарные частицы и античастицы. Виды взаимодействия частиц и их объединения в рамках единой теории. Кварки. Систематика элементарных частиц.
- •2) Гипотеза де Бройля. Опыты по дифракции электронов. Длина волны де Бройля.
- •3) Электромагнитная природа света. Понятие о когерентности. Сложение колебаний. Временная и пространственная когерентность.
- •2) Интерференция света. Длина и время когерентности. Оптическая длина пути и оптическая разность хода лучей. Способы получения интерференционных картин.
- •3) Волновые свойства частиц. Соотношение неопределенности Гейзенберга. Уравнение Шредингера.
- •2) Интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.
- •3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное поглощение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна
- •2) Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенности). Лазеры.
- •2) Дифракция света. Дифракция Френеля от диска и круглого отверстия. Зонная пластинка. Характерные области дифракции света.
- •3) Строение атомного ядра. Основные характеристики атомного ядра. Энергия связи, ядерные силы.
- •2) Дифракция Фраунгофера на нескольких щелях. Дифракционная решетка.
- •3) Уравнение Шредингера. Квантомеханическое описание частицы в бесконечно глубокой прямоугольной потенциальной яме.
- •2) Дифракционная решетка. Дифракционные спектры. Дисперсия и разрешающая способность решетки.
- •3) Тепловое излучение. Основные характеристики теплового излучения. Абсолютно черное тело. Законы теплового излучения. Распределение энергии в спектре излучения абсолютно черного тела.
- •3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (законы Стефана-Больцмана, Вина, формула Рэлея-Джинса).
- •2) Поляризация света. Закон Малюса. Естественная анизотропия. Поляризационные приборы. Призма Николя.
- •3) Квантовые свойства света. Опыт Боте. Энергия, масса и импульс фотона. Давление света. Опыты Лебедева.
- •2) Сложение поляризованных колебаний. Четвертьволновые и полуволновые пластинки.
- •3) Атомные спектры. Сериальные формулы. Опыты по рассеянию альфа-частиц (опыты Резерфорда).
- •2) Поляризация света. Искусственная анизотропия. Эффект Керра, эффект Фарадея.
- •3) Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенностей). Лазеры. Рубиновый и гелий-неоновый.
- •2) Квантовые свойства света. Опыт Боте. Энергия, масса и импульс фотона. Внешний фотоэффект. Красная граница фотоэффекта.
- •3) Закономерности в атомных спектрах. Сериальные формулы. Понятия головной линии и границы серии. Постулаты Бора.
- •2) Дифракция рентгеновских лучей на кристаллических структурах. Формула Вульфа-Брегга. Исследования строения кристаллов.
- •3) Естественная и искусственная радиоактивность. Закон радиоактивного распада. Активность радиоактивного препарата, период полураспада, среднее время жизни.
- •2) Двойное лучепреломление. Одноосные кристаллы. Поляроиды и поляризационные призмы. Анализ поляризованного света.
- •3) Строение атома. Характеристические рентгеновские спектры. Закон Мозли.
- •2) Оптическая активность. Вращение плоскости поляризации. Эффект Фарадея.
- •3) Естественная радиоактивность. Альфа- и бета-распады, их закономерности. Закон радиоактивного распада.
- •2) Электромагнитная природа света. Сложение световых волн, понятие о когерентности. Интерференция света. Расчет интерференционной картины от двух источников.
- •3) Ядерные реакции. Реакции деления и синтеза. Цепная реакция. Законы сохранения в ядерных реакциях.
- •2) Интерференция в тонких пленках. Изменение фазы волны при отражении. Полосы равной толщины и равного наклона
- •3) Элементарные частицы и античастицы. Виды взаимодействия частиц. Кварки. Систематика элементарных частиц.
- •2) Дифракция ренгеновских лучей на пространственной решетке. Формула Вульфа-Брегга. Исследование структуры кристаллов.
- •3) Тепловое излучение. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.
- •2) Интерференция света. Пространственная и временная когерентность. Оптическая длина пути и оптическая разность хода. Способы наблюдения интерференционных картин.
- •3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (закон Стефана-Больцмана, Вина, Рэлея-Джинса).
- •2) Элементарная Боровская теория водородного атома.
- •3) Закон радиоактивного распада. Активность, период полураспада. Среднее время жизни.
- •2) Оптическая активность. Вращение плоскости поляризации. Эффект Фарадея.
- •3) Квантовые свойства света. Тормозное рентгеновское излучение. Коротковолновая граница сплошного рентгеновского спектра.
- •2) Дифракция Фраунгофера на одной щели. Распределение интенсивности света при дифракции на щели. Влияние ширины щели на дифракционную картину.
- •3) Квантовые свойства света. Эффект Комптона и его теория. Законы сохранения импульса и энергии в эффекте Комптона.
3) Строение атомного ядра. Основные характеристики атомного ядра. Энергия связи, ядерные силы.
Э. Резерфорд, исследуя прохождение а-частиц с энергией в несколько мегаэлектрон-вольт через тонкие пленки золота пришел к выводу о том, что атом состоит из положительно заряженного ядра и окружающих его электронов. Проанализировав эти опыты, Резерфорд также показал, что атомные ядра имеют размеры примерно 10-14
Атомное ядро состоит из элементарных частиц — протонов и нейтронов.
Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя
где![]()
ш — масса электрона. Нейтрон (п) — нейтральная
![]()
Протоны
и нейтроны называются нуклонами (от лат. nucleus — ядро). Общее число нуклонов в атомном ядре называется массовым числом А. Атомное ядро характеризуется зарядом Z S, где е — заряд протона, Z — зарядовое число ядра, равное числу прогонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Ядро обозначается тем же символом, что и
нейтральный атом:
|
где
X — символ
химического элемента, Z — атомный номер (число протонов в ядре), А —массовое число (число нуклонов в ядре).
Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме. Ядра с одинаковыми Z, но разными А называются изотопами, а ядра с одинаковыми А, но разными Z—изобарами. Радиус ядра задается эмпирической формулой
Исследования
показывают, что атомные ядра являются
устойчивыми образованиями. Это означает,
что в ядре между нуклонами существует
определенная связь. Энергия, которую
необходимо затратить, чтобы расщепить
ядро на отдельные нуклоны, называется
энергией связи ядра.
Согласно энергия
связи нуклонов в ядре![]()
'где тр, тп, тя — соответственно массы протона, нейтрона и ядра. В таблицах обычно приводятся не массы ядер, а массы m атомов. Поэтому для энергии связи ядра пользуются формулой
mh
— масса атома водорода. Так как mn
больше mр
на величину mе,
то первый член в квадратных скобках
включает в себя массу Z электронов. Но
так как масса атома т отличается от
массы ядра т„ как раз на массу Z
электронов, то вычисления по формулам
(252.1) и (252.2) приводят одинаковым
результатам. Величина
![]()
называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра. Часто вместо энергии связи рассматривают удельную энергию связи 6Еn — энергию связи, отнесенную к одному нуклону.
Билет №14
2) Дифракция Фраунгофера на нескольких щелях. Дифракционная решетка.
Дифракция от щели. Бесконечно длинную щель можно образовать, расположив ряжом две обращенные в разные стороны полуплоскости. Следовательно, задача и дифракции Френеля от щели может быть решена с помощью спирали Карню. Волновую пов-ть падающего света, плоскость щели и экран, на котором наблюдается дифракционная картина, будем считать параллельными друг другу. Для точки Р, лежащей против середины щели, начало и конец результирующего вектора находятся в симметричных относительно начала координат точках спирали. Если сместиться в точку Р’, лежащую против края щели, начало результирующего вектора переместится в середину спирали О.
Конец вектора переместится по спирали в направлении полюса F1. При углублении в область геометрической тени начало и конец результирующего вектора будут скользить по спирали и в конце концов окажутся на наименьшем расстоянии друг от друга
Интенсивность света при этом достигнет минимума. При дальнейшем скольжении по спирали начало и конец вектора снова отойдут друг от друга и интенсивность будет расти. То же самое будет происходить при смещении из точки Р в противоположное сторону, так как дифракционная картина симметрична относительно середины щели.
Если изменять ширину щели, сдвигая полуплоскости в противоположные стороны, интенсивность в средней точке Р будет пульсировать, проходя попеременно через максимумы (а) и отличные от нуля минимумы (б)
Дифракционная решетка и дифракционные спектры. Дифракционной решеткой называется последовательность из большого числа N одинаковых параллельных щелей. Ширина каждой щели равна b, расстояние между соседними щелями, которое называется периодом решетки, равно d. Расположим параллельно решетке собирательную линзу, в фокальной пл-ти которой поставим экран. Выясним характер диф. картины, получающейся на экране при падении на решетку световой волны (для простоты будем считать, что волна падает на решетку нормально). Каждая из щелей даст на экране картину, описываемую кривой. Картины от всех щелей придутся на одно и то же место экрана (независимо от положения щели, центральный максимум лежит против центра линзы). Если бы колебания, приходящие в точку Р от различных щелей, были некогерентными, результирующая картина от N щелей отличалась бы от картины, создаваемой одной щелью лишь тем, что все интенсивности выросли бы в N раз. Однако, колебания от различных щелей являются в большей или меньшей степени когерентными; поэтому результирующая интенсивность будет отлична от
интенсивность,
создаваемая одной щелью). Предполагая,
что радиус когерентности (максимальное
поперечное направлению распространению
волны расст., на котором возможно
проявление интерференции) падающей
волны намного превышает длину решетки.
Так что колебания от всех щелей можно
считать когерентными друг относительно
друга. В этом случае результир. колеб
в точке Р пред ставл. собой сумму N
колебаний с одинаковыми ампл. Aϕ,
сдвинутых друг относительно друга по
фазе на одну и ту же величину 5 .
Интенсивность при этих условиях равна:![]()
где
-
интенсивность, создаваемая
каждым из лучей в отдельности. Из верхнего рисунка видно, что разность хода от соседн щелей равна А = d sin q> Следов, разность фаз
![]()
Дифракционный спектр Распределение интенсивности на экране, получаемое вследствие дифракции (это явление приведено на нижнем рис.). Основная часть световой энергии сосредоточена в центральном максимуме. Сужение щели приводит к тому, что центральный максимум расплывается, а его яркость уменьшается (это, естественно, относится и к другим максимумам). Наоборот, чем щель шире (b > X ), тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При b » X в центре получается резкое изображение источника света, т.е. имеет мет прямолинейное распространение света. Эта картина будет иметь место только для монохроматического света. При освещении щели белым светом, центральный максимум будет иметь место белой полоски, он общий для всех длин волн (при (р = О разность хода равна нулю для всех длин волн)
