- •Основные физико-механические свойства материалов
- •Основные свойства строительных материалов Классификация свойств строительных материалов:
- •Физические свойства
- •Параметры состояния
- •Гидрофизические свойства
- •Теплофизические свойства
- •Механические свойства материалов
- •Прочностные свойства
- •Деформационные свойства
- •Склерометрические свойства
- •Природные каменные материалы
- •Генетическая классификация горных пород
- •Магматические горные породы:
- •Осадочные горные породы:
- •Добыча и переработка природных каменных материалов
- •Керамические материалы и изделия
- •Классификация керамики по назначению
- •Строительная керамика
- •Сырьё для производства керамики
- •Примеси:
- •Свойства глин
- •Добавки, применяемые в керамической технологии
- •Технология изготовления керамических изделий
- •Свойства кирпича глиняного обыкновенного
- •Стекло и стеклянные изделия
- •Признаки стеклообразного вещества
- •Стеклообразующие оксиды
- •Сырьё для производства стекла
- •Производство стекла
- •Свойства стекла
- •Ситаллы
- •Технология производства ситаллов
- •Материалы, используемые для производства ситаллов
- •Свойства ситаллов
- •Вяжущие вещества
- •Строительные вяжущие
- •Воздушные вяжущие Гипсовые вяжущие
- •Свойства гипса (строительный β-модификации)
- •Применение гипсовых вяжущих веществ
- •Теория твердения гипса
- •Воздушная известь
- •Свойства извести
- •Магнезиальные вяжущие
- •Гидравлическая известь
- •Свойства гидравлической извести
- •Романцемент
- •Портландцемент (1824 г.)
- •Получение портландцемента
- •Подготовка сырья
- •Минералогический состав портландцементного клинкера
- •Твердение портландцемента
- •Теория твердения портландцемента по Байкову
- •Коррозия цементного камня
- •Теория коррозии цементного камня Москвина
- •Типы коррозии цементного камня:
- •Свойства цементов
- •Быстротвердеющий портландцемент (бтц)
- •Сульфатостойкий портландцемент
- •Портландцементы с органическими добавками
- •Пластифицированные портландцементы
- •Гидрофобный портландцемент
- •Портландцементы с минеральными (неорганическими) добавками
- •Пуццолановый портландцемент
- •Применение пуццоланового портландцемента
- •Шлакопортландцемент (шпц)
- •Глиноземистый цемент
- •Напрягающий цемент
- •Расширяющиеся цементы
- •Белый и цветные портландцементы
- •Органические вяжущие вещества
- •Битумные вяжущие вещества
- •Получение нефтяных остаточных битумов
- •Получение окисленных битумов
- •Получение компаундированных битумов
- •Состав и структура битума
- •Свойства битумов
- •Композиционные материалы
- •Отличительные особенности композиционных материалов
- •Способы получения композиционных материалов
- •От чего зависят свойства композиционных материалов
- •Материалы, используемые для получения композиционных материалов
- •Цементные бетоны
- •Материалы для тяжелых цементных бетонов
- •Основные свойства бетонной смеси
- •Заполнитель
- •Свойства бетона
- •Железобетонные изделия
- •Номенклатура железобетонных изделий
- •Производство железобетонных изделий
- •1 Схема.
- •3 Схема.
- •Неразрушающие методы контроля качества бетона
- •Разновидности бетона Гидротехнический бетон
- •Требования к материалам для гидротехнического бетона
- •Высокопрочный бетон
- •Требования к материалам для высокопрочного бетона
- •Особенности проектирования высокопрочного бетона
- •Быстротвердеющие бетоны (бтц)
- •Асфальтобетон
- •Технология изготовления асфальтобетонных смесей
- •Требования к горячему асфальтобетону
- •Подбор составов асфальтобетона
- •Дегтебетон
- •Технология изготовления асфальтобетонных смесей
- •Литой асфальтобетон
- •Основы технологии изготовления холодного асфальтобетона
- •Легкие бетоны
- •Заполнители для легких бетонов
- •Полимербетоны
- •Наиболее распространённые полимерные добавки (суперпластификаторы)
- •Примерный состав полимербетона:
- •Кровельные и гидроизоляционные материалы
- •Битумные основные гидроизоляционные материалы
- •Получение рубероида
- •Дегтевые кровельные рулонные материалы
- •Герметизирующие материалы
- •Пластмассы
- •Связующие вещества
- •Полимеризационные высокомолекулярные соединения
- •Поликонденсационные высокомолекулярные соединения
- •Макроструктура
- •Микроструктура
- •Физико-механические свойства древесины Цвет и текстура древесины
- •Влажность
- •Гигроскопичность
- •Усушка и разбухание
- •Плотность древесины
- •Прочность
- •Пороки древесины
- •Неправильности строения
- •Виды лесных материалов
- •Металлы, применяемые в строительстве
- •Коррозия металлов Виды коррозии
- •Защита от коррозии
Заполнитель
Введение заполнителя в цементное тесто сильно влияет на свойства материала. Слои цементного теста при введении заполнителя теряют подвижность. В зависимости от соотношения между цементным тестом и заполнителем различают 3 структуры бетонной смеси:
Базальная;
Поровая;
Контактная.
Свойства бетона
Прочность бетона:
Прочность бетона характеризуется его маркой, т. е. пределом прочности на сжатие бетонных образцов-кубов размером 15x15x15 см, изготовленных из бетонной смеси рабочего состава и испытанных после 28 суточного твердения в нормальных условиях.
Существуют марки бетона (предел прочности на сжатие) от М50 до М450. Также существуют высокопрочные бетоны М500 и М800.
Классом
бетона называется нормативная (наибольшая,
при нормальной эксплуатации) кубиковая
прочность в МПа, задаваемая с обеспеченностью
0,95 и с коэффициентом вариации
.
Для перехода от класса к марке бетона
используют формулы:
;
,
где
– класс бетона;
– прочность бетона;
– средняя прочность бетона.
Прочность бетона зависит от многих факторов. Главные из них:
Активность цемента – марка цемента по прочности. Цементы высокой активности дают более прочные бетоны, однако при одной и той же прочности цемента можно получить бетон разной прочности, изменяя количество воды в смеси.
Для получения удобоукладываемой бетонной смеси водоцементное отношение принимают равным 0,4–0,7.
Для химического взаимодействия цемента воды требуется 15–20% от массы цемента. Избыточная вода, не вступившая в химическое взаимодействие, испаряясь из бетона образует поры, уменьшает прочность, а следовательно, прочность можно повысить уменьшая водоцементное отношение и уплотняя бетон.
На прочность влияют качество заполнителя, продолжительность твердения, форма и шероховатость поверхности заполнителя.
Прочность
бетона при благоприятной температуре
и влажности постоянно повышается. Первые
7–14 суток прочность набирается быстрее.
К 28 суткам рост прочности замедляется.
Твердение бетона можно ускорить
повышением температуры. Например, при
температуре
бетон за 12 часов набирает 70% марочной
прочности. При температуре
твердение бетона прекращается. Для
ускорения твердения также применяют
добавки.
Плотность и непроницаемость бетона для жидкостей и газов:
Бетон – это пористый материал. Поры образуются в результате неполного удаления воздуха при уплотнении и при испарении избыточной воды. Получить бетон высокой прочности можно следующими способами:
а) Применением низкого водоцементного отношения;
б) Рациональным подбором зернового состава заполнителей;
в) Введением пластифицирующих и гидрофобизирующих добавок;
г) Тщательным уплотнением бетонной смеси;
д) Правильным уходом за твердеющим бетоном.
Но даже при соответствующих мероприятиях получить абсолютно плотный бетон невозможно.
Водонепроницаемость бетона:
Водонепроницаемость характеризуется наибольшим давлением воды, при котором она не просачивается через образцы. Бетон, плотно уложенный, с малым водоцементным отношением, с мелкопористой структурой является водонепроницаемым материалом.
По водонепроницаемости бетоны делят на марки: W2; W4; W6; W8; W10; W12 (число означает давление в атмосферах). Для увеличения водонепроницаемости применяют:
а) Торкретирование (плотная штукатурка, наносимая под давлением);
б) Покрытие бетонной конструкции жидким стеклом.
Морозостойкость:
Долговечность зависит от морозостойкости. Морозостойкость характеризуется количеством циклов попеременного замораживания при температуре –20 °С и оттаивания в воде комнатной температуры без потери массы более 5% и прочности более 15%. Марки морозостойкости бетона:F50;F75;F100;F200;F300;F400;F500.
Методы повышения морозостойкости:
а) Применение морозостойких заполнителей;
б) Уменьшение водоцементного отношения;
в) Применение гидрофобных и гидрофильных добавок;
г) Применение портландцементов высоких марок;
д) Применение глинозёмистого цемента.
Усадка и расширение бетона:
Твердение бетона на воздухе сопровождается уменьшением его объёма, т. е. усадкой. Большую усадку дают бетоны на жирных смесях (с большим расходом вяжущего вещества) и с большим водоцементным отношением. Наибольшая усадка происходит в начальный период твердения (за первые сутки она составляет 50–70% всей усадки).
На величину усадки также влияет минералогический состав цемента, тонкость помола (чем меньше тонкость помола, тем меньше усадка).
Способы снижения усадки
а) Применение цементов низких марок;
б) Применение белитовых цементов;
в) Избегание жирных смесей;
г) Уменьшение количества воды;
д) Применение рационального зернового состава заполнителей;
е) Строгое
соблюдение температурно-влажностного
режима твердения бетона (влажность
равна 100%; температура равна
).
Расширение бетона происходит от нагревания в результате экзотермии при взаимодействии цемента с водой. В результате этого в бетоне образуются трещины. Для предотвращения расширения в массивных конструкциях предусматривают выполнение температурных швов.
Стойкость бетона к коррозии:
Под воздействием агрессивных жидкостей и газов бетон разрушается. Коррозия бетона вызывается коррозией цементного камня. Заполнители всегда могут быть подобраны стойкими. Для предотвращения коррозии рекомендуется:
а) Использование цементов с минимальным количеством трёхкальциевого алюмината;
б) Оклейка конструкции плёночными материалами;
в) Футеровка штучными материалами (например, обкладка плитками).
Отношение бетона к действию высоких температур:
Бетон – огнестойкий материал, что позволяет применять его для устройства дымовых труб и промышленных печей. При длительном воздействии высоких температур необходимо предусмотреть применение специальных видов бетона на глинозёмистых смесях.
