Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Интерференция света_9.doc
Скачиваний:
21
Добавлен:
09.05.2015
Размер:
336.9 Кб
Скачать

1.2. Метод Ллойда

На рис. 3 изображено интерференционное устройство, состоящее из действительного источника свете S и плоского зеркала (зеркала Ллойда). Один световой пучок, исходящий из источника света, отражается от зеркала и попадает на экран . Этот пучок света можно представить исходяцим от мнимого изображения

Рис.3.

источника света , образованного зеркалом. Кроме того, на экран попадают лучи, идущие непосредственно из источника света S. В той области экрана, где перекрываются оба пучка света, т.е. накладываются две когерентные волны, будет наблюдаться интерференционная картина.

1.3. Бипризма Френеля

Когерентные волны могут быть поручены также при помощи бипризмы Френеля - двух призм (с очень малыми преломляющими углами), сложенных основаниями.

На рис.4 дана схема хода лучей в этом опыте.

Пучок расходящихся лучей от источника света S, проходя верхнюю призму, преломляется к ее основанию и распространяется дальше как бы из точки - мнимого изображения точки . Другой пучок, падающий на нижнюю призму, преломляясь, отклоняется вверх. Точкой, из которой расходятся лучи этого пучка, служит - тоже мнимое изображение точки . Оба пучка накладываются друг на друга и дают на экране интерференционную картину. Результат интерференции в каждой точке экрана, например, в точке Р зависит от разности хода лучей, падающих в эту точку, т.е. от разности расстояний до мнимых источников света и .

2. Описание установки и вывод расчетной формулы

В настоящей работе требуется по результатам измерения периода наблюдаемой интерференционной картины определить длину волны используемого монохроматического излучения. Источником излучения является лазер, размещенный вместе с другими узлами экспериментальной установки на оптической скамье (физика работы лазера изложена в приложении). Оптическая схема установки приведена на рис.5.

Параллельный пучок света, формируемый лазером ЛГ, фокусируется линзой Л1, и её фокальная точка является источником, освещающим бипризму Френеля БФ. Учитывая, что расстояние от точки до бипризмы много больше светового пятна на бипризме, т.е. расходимость пучка лучей, исходящих из фокуса линзы Л1, мала, в первом приближении можно считать, что все лучи, падающие на бипризму, параллельны. Тогда лучи, падающие на верхний клин бипризмы, отклоняются вниз на угол

(12)

где п - показатель преломления бипризмы;

- преломляющий угол бипризмы.

Лучи же, падающие на нижний клин, отклоняются вверх так же на угол . Таким образом, от бипризмы к линзе Л2 распространяются два параллельных пучка света (две плоские волны), угол между которыми равен 2. Линза Л2 фокусирует эти пучки и формирует в своей фокальной плоскости два точечных источника, отстоящих друг от друга на расстоянии

(13)

где - фокусное расстояние линзы Л2.

Учитывая, что угон так же как и угол очень мал, расстояние между источниками можно записать в виде

(14)

Когерентные волны, распространяющиеся от этих источников накладываются друг на друга, и формируют на экране интерференционную картину, период которой описывается выражением (11).Подставляя в это выражение

(15)

(что следует из формул (12), (14) и рис.5) для периода запишем

(16)

Отсюда получим расчетную формулу

(17)

Параметры, входящие в формулу (17) сведены в таблицу.