
- •Глава1 Что такое цифровые микросхемы. Виды цифровых микросхем
- •Глава 2 Области применения цифровых микросхем
- •Глава 3 Условные графические изображения цифровых микросхем (гост)
- •Параметры цифровых микросхем
- •Уровни логического нуля и единицы
- •Входные и выходные токи цифровых микросхем
- •Параметры, определяющие быстродействие цифровых микросхем
- •Описание логической функции цифровых схем
- •Раздел 2
- •Логический элемент "и"
- •Логический элемент "или"
- •Глава 2 Диодно-транзисторная логика (дтл)
- •Глава 3 Транзисторно-транзисторная логика (ттл)
- •Логические уровни ттл микросхем
- •Семейства ттл микросхем
- •Глава 4 Цифровые логические микросхемы, выполненные на комплементарных моп транзисторах (кмоп) Логические кмоп (кмдп) инверторы
- •Логические кмоп (кмдп) элементы "и"
- •Логические кмоп (кмдп) элементы "или"
- •Особенности применения кмоп микросхем
- •Логические уровни кмоп микросхем
- •Семейства кмоп микросхем
- •Глава 5 Согласование цифровых микросхем различных серий между
- •Согласование микросхем из различных серий между собой
- •Согласование по току
- •Согласование микросхем с различным напряжением питания
- •Глава 6 Регенерация цифрового сигнала (Триггер Шмитта)
- •Раздел 3 Арифметические основы цифровой техники.
- •Глава 1
- •Арифметические основы цифровой техники
- •Системы счисления
- •Десятичная система счисления
- •Двоичная система счисления
- •Восьмеричная система счисления
- •Шестнадцатеричная система счисления
- •Глава 2 Преобразование чисел из одной системы счисления в другую
- •Преобразование целых чисел
- •Глава 3 Преобразование дробной части числа
- •Раздел 4
- •2. Законы отрицания a. Закон дополнительных элементов
- •B. Двойное отрицание
- •C. Закон отрицательной логики
- •3. Комбинационные законы
- •A. Закон тавтологии (многократное повторение)
- •B. Закон переместительности
- •Совершенная дизъюктивная нормальная форма (сднф)
- •Совершенная конъюктивная нормальная форма (скнф)
- •Глава 3 Дешифраторы (декодеры)
- •Десятичный дешифратор (декодер)
- •Семисегментный дешифратор
- •Глава 4 Шифраторы (кодеры)
- •Глава 5 Мультиплексоры
- •Особенности построения мультиплексоров на ттл элементах
- •Особенности построения мультиплексоров на кмоп элементах
- •Глава 6 Демультиплексоры
- •Раздел 5 Генераторы
- •Глава 1
- •Генераторы периодических сигналов
- •Усилительные параметры кмоп инвертора
- •Глава 2 Осцилляторные схемы генераторов
- •Глава 3 Мультивибраторы
- •Глава 4 Особенности кварцевой стабилизации частоты цифровых генераторов
- •Глава 5 Одновибраторы (ждущие мультивибраторы)
- •Укорачивающие одновибраторы
- •Расширяющие одновибраторы (ждущие мультивибраторы)
- •Раздел 6 Последовательностные устройства (цифровые устройства с памятью)
- •Глава 1
- •Триггеры
- •Глава 2 rs триггер
- •Синхронный rs триггер
- •Глава 3 d триггеры, работающие по потенциалу (статические d триггеры)
- •Глава 4 Явление метастабильности
- •Глава 5 d триггеры, работающие по фронту (динамические d триггеры)
- •Глава 6 t триггеры
- •Глава 7 jk триггер
- •Глава 8 Регистры
- •Параллельные регистры
- •Глава 9 Последовательные (сдвиговые) регистры
- •Глава 10 Универсальные регистры
- •Глава 11 Счётчики
- •Двоичные асинхронные счётчики
- •Двоичные вычитающие асинхронные счётчики
- •Глава 12 Недвоичные счётчики с обратной связью
- •Глава 13 Недвоичные счётчики с предварительной записью
- •Глава 14 Синхронные счётчики
- •Глава 15 Синхронные двоичные счётчики
- •Раздел 7
- •Современные виды цифровых микросхем.
- •Глава 1
- •Микросхемы малой степени интеграции (малая логика)
- •Глава 2 Программируемые логические интегральные схемы (плис).
- •Классификация плис
- •Глава 3 Программируемые логические матрицы.
- •Глава 4 Программируемые матрицы логики (pal).
- •Глава 5 Сложные программируемые логические устройства (cpld).
- •Внутреннее устройство cpld
- •Разработка цифровых устройств на cpld
- •Глава 6 Программируемые пользователем вентильные матрицы (fpga).
- •Раздел 8
- •Индикаторы.
- •Глава 1
- •Виды индикаторов.
- •Малогабаритные лампочки накаливания
- •Расчет транзисторного ключа
- •Глава 2 Газоразрядные индикаторы.
- •Глава 3 Светодиодные индикаторы.
- •Глава 4 Жидкокристаллические индикаторы.
- •Принципы работы жидкокристаллических индикаторов
- •Режимы работы жидкокристаллических индикаторов
- •Параметры жидкокристаллических индикаторов
- •Формирование цветного изображения
- •Формирование напряжения для работы жидкокристаллического индикатора
- •Глава 5 Динамическая индикация.
- •Раздел 9
- •Синтезаторы частоты.
- •Глава 1
- •Цифровой фазовый детектор.
- •Глава 2 Фазовый компаратор.
- •Глава 3 Цепи фазовой автоподстройки частоты.
- •Глава 4 Умножители частоты
- •Глава 5 Частотный детектор, построенный на основе фапч
- •Раздел 10
- •Особенности аналого-цифрового и цифро-аналогового преобразования.
- •Глава 1
- •Квантование аналогового сигнала по времени
- •Глава 2 Погрешности дискретизатора
- •Погрешность хранения
- •Погрешность выборки
- •Глава 3 Фильтры устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •Глава 4 Дискретизация сигнала на промежуточной частоте (субдискретизация)
- •Глава 5 Параллельные ацп (flash adc)
- •Глава 6 Последовательно-параллельные ацп
- •Глава 7 ацп последовательного приближения (sar adc)
- •Глава 8 Сигма-дельта ацп
- •Глава 9 Цифроаналоговые преобразователи (цап) с суммированием токов
- •Глава 10 Цифроаналоговые преобразователи r-2r
- •Раздел 11
- •11.1 Основные блоки цифровой обработки сигналов
- •Глава 1 Двоичные сумматоры
- •Глава 2 Умножители
- •Глава 3 Постоянные запоминающие устройства.
- •Глава 4 Цифровые фильтры.
- •11.2 Микросхемы прямого цифрового синтеза радиосигналов.
- •Глава 5 Фазовые аккумуляторы
- •Глава 6 Полярные модуляторы
- •Глава 7 Квадратурные модуляторы.
- •Глава 8 Интерполирующие цифровые фильтры.
- •Глава 9 Однородные интерполирующие цифровые фильтры.
- •Микросхемы цифрового приема радиосигналов
- •Глава 10 Квадратурные демодуляторы.
- •Глава 11 Децимирующие цифровые фильтры.
- •Децимирующий фильтр с конечной импульсной характеристикой
- •Глава 12 Однородные децимирующие цифровые фильтры.
- •Раздел 12 Примеры реализации цифровых устройств
- •12.1 Электронные часы
- •Разработка структурной схемы
- •Глава 2 Разработка принципиальной схемы
- •Глава 3 Разработка принципиальной схемы индикации часов
- •12.2 Последовательные порты
- •Глава 4
- •Глава 5
Глава 5
SPI-порты
Кроме задачи передачи непрерывного потока информации достаточно часто требуется передавать отдельные цифровые пакеты или управляющие команды. Эти пакеты могут передаваться достаточно редко. Именно для передачи такого вида информации и предназначен синхронный последовательный интерфейс (SPI).
В синхронном последовательном интерфейсе SPI кадровые синхронизирующие импульсы не передаются постоянно. Это не нужно. Они присутствуют только в момент передачи команды. Соответственно меняется и их название. В SPI интерфейсе сигнал кадровой синхронизации называется выбор ведомого (slave select - SS). Временные диаграммы сигналов на выводах этого порта приведены на рисунке 12.2.13.
Рисунок
12.2.13. Временные диаграммы сигналов на
выводах синхронного последовательного
интерфейса SPI
Как видно из приведённых временных диаграмм, сигнал кадровой синхронизации накрывает весь промежуток времени, предназначенный для обмена информацией. Он как бы разрешает этот обмен. Отсюда и его название.
Сигнал тактовой синхронизации в этом интерфейсе используется один как для передатчика, так и для приёмника. Это позволяет экономить внешние выводы микросхемы. Для того чтобы не запутаться какой вывод передачи последовательных данных с каким соединять эта информация включена в название выводов. Название MISO обозначает вход главного устройства выход подчинённого (master input — slave output), а название MOSI обозначает выход главного и вход подчинённого устройства (master output — slave input). В качестве главного устройства в этом интерфейсе обычно используется микроконтроллер, реже сигнальный процессор.
Рассмотрим схему цифрового устройства, которая может реализовать обмен данными по интерфейсу SPI. Пример такой схемы приведён на рисунке 12.2.14
Рисунок
12.2.14 Схема master SPI-порта
В этой схеме для передачи и приёма последовательных данных используются сдвиговые регистры D3 и D6. Так как синхроимпульсы SPI порта, в отличие от синхросигнала аналого-цифрового или цифро-аналогового преобразователей, используются только для синхронизации передачи данных, то требования к задающему генератору меньше. В результате для формирования синхронизирующего сигнала можно использовать встроенный кварцевый генератор (кварцевый резонатор, естественно, будет подключаться к внешним выводам микросхемы).
Кварцевый генератор в схеме, приведенной на рисунке 12.2.14, построен на логическом элементе "2И-НЕ". Это позволяет останавливать и вновь запускать этот генератор. Для формирования сигнала выбора ведомого SS и для подсчёта необходимого количества импульсов синхронизации (в нашем случае восьми) служит двоичный счётчик D2.
Рассмотрим работу схемы формирования сигнала выбора ведомого подробнее. В исходном состоянии в двоичном счётчике записано число 10002. При этом на выводе SS и на выходе логического элемента D1 присутствует высокий потенциал.
При параллельной записи данных в регистр передачи D3 импульс записи одновременно подаётся на вход обнуления счётчика D2. В результате на выводе SS появляется низкий потенциал. Это означает, что SPI интерфейс начинает передачу данных. Одновременно снимается запрещающий потенциал с логического элемента D1 "2И-НЕ". При этом на обоих входах этого элемента появляется единичный потенциал. В результате на выходе этого элемента появится нулевой потенциал и возникнут условия для самовозбуждения генератора.
Временные диаграммы на входе и выходах счетчика D2 приведены на рисунке 12.2.15
Рисунок
12.2.15. Временные диаграммы схемы
формирования сигнала выбора подчиненного
SS
Импульсы поступают на вход последовательной синхронизации сдвигового регистра D3 и вход счётчика D2. После поступления на вход схемы D3 восьмого импульса передача данных в последовательном виде завершается, а в счётчике D2 оказывается записанным число 8. В двоичном виде оно равно значению 10002, а значит, на выводе SS вновь появится высокий потенциал, означающий завершение передачи данных по синхронному последовательному интерфейсу SPI.
Так как этот же сигнал через инвертор подаётся на вход логического элемента D1, то на его выходе появится единичный потенциал, и условия генерации сорвутся. Генератор больше не будет вырабатывать импульсы, а значит, двоичный счётчик останется в состоянии 10002 до прихода следующего импульса записи в SPI порт.
Интегрирующая цепочка R3C3 используется для подавления короткого импульса в конце формирования сигнала SS, а инвертор D4 позволяет осуществлять запись в сдвиговый регистр D6 по заднему фронту сигнала тактовой синхронизации. В результате подчиненное устройство может успеть подготовить очередной бит передаваемых данных.
Мы рассмотрели схему SPI интерфейса со стороны главного устройства. Схема подчиненного устройства намного проще. Она может быть построена на обыкновенном сдвиговом регистре, как это показано на рисунке 12.2.16.
Рисунок
12.2.16. Схема подчиненного SPI-порта