
- •Глава1 Что такое цифровые микросхемы. Виды цифровых микросхем
- •Глава 2 Области применения цифровых микросхем
- •Глава 3 Условные графические изображения цифровых микросхем (гост)
- •Параметры цифровых микросхем
- •Уровни логического нуля и единицы
- •Входные и выходные токи цифровых микросхем
- •Параметры, определяющие быстродействие цифровых микросхем
- •Описание логической функции цифровых схем
- •Раздел 2
- •Логический элемент "и"
- •Логический элемент "или"
- •Глава 2 Диодно-транзисторная логика (дтл)
- •Глава 3 Транзисторно-транзисторная логика (ттл)
- •Логические уровни ттл микросхем
- •Семейства ттл микросхем
- •Глава 4 Цифровые логические микросхемы, выполненные на комплементарных моп транзисторах (кмоп) Логические кмоп (кмдп) инверторы
- •Логические кмоп (кмдп) элементы "и"
- •Логические кмоп (кмдп) элементы "или"
- •Особенности применения кмоп микросхем
- •Логические уровни кмоп микросхем
- •Семейства кмоп микросхем
- •Глава 5 Согласование цифровых микросхем различных серий между
- •Согласование микросхем из различных серий между собой
- •Согласование по току
- •Согласование микросхем с различным напряжением питания
- •Глава 6 Регенерация цифрового сигнала (Триггер Шмитта)
- •Раздел 3 Арифметические основы цифровой техники.
- •Глава 1
- •Арифметические основы цифровой техники
- •Системы счисления
- •Десятичная система счисления
- •Двоичная система счисления
- •Восьмеричная система счисления
- •Шестнадцатеричная система счисления
- •Глава 2 Преобразование чисел из одной системы счисления в другую
- •Преобразование целых чисел
- •Глава 3 Преобразование дробной части числа
- •Раздел 4
- •2. Законы отрицания a. Закон дополнительных элементов
- •B. Двойное отрицание
- •C. Закон отрицательной логики
- •3. Комбинационные законы
- •A. Закон тавтологии (многократное повторение)
- •B. Закон переместительности
- •Совершенная дизъюктивная нормальная форма (сднф)
- •Совершенная конъюктивная нормальная форма (скнф)
- •Глава 3 Дешифраторы (декодеры)
- •Десятичный дешифратор (декодер)
- •Семисегментный дешифратор
- •Глава 4 Шифраторы (кодеры)
- •Глава 5 Мультиплексоры
- •Особенности построения мультиплексоров на ттл элементах
- •Особенности построения мультиплексоров на кмоп элементах
- •Глава 6 Демультиплексоры
- •Раздел 5 Генераторы
- •Глава 1
- •Генераторы периодических сигналов
- •Усилительные параметры кмоп инвертора
- •Глава 2 Осцилляторные схемы генераторов
- •Глава 3 Мультивибраторы
- •Глава 4 Особенности кварцевой стабилизации частоты цифровых генераторов
- •Глава 5 Одновибраторы (ждущие мультивибраторы)
- •Укорачивающие одновибраторы
- •Расширяющие одновибраторы (ждущие мультивибраторы)
- •Раздел 6 Последовательностные устройства (цифровые устройства с памятью)
- •Глава 1
- •Триггеры
- •Глава 2 rs триггер
- •Синхронный rs триггер
- •Глава 3 d триггеры, работающие по потенциалу (статические d триггеры)
- •Глава 4 Явление метастабильности
- •Глава 5 d триггеры, работающие по фронту (динамические d триггеры)
- •Глава 6 t триггеры
- •Глава 7 jk триггер
- •Глава 8 Регистры
- •Параллельные регистры
- •Глава 9 Последовательные (сдвиговые) регистры
- •Глава 10 Универсальные регистры
- •Глава 11 Счётчики
- •Двоичные асинхронные счётчики
- •Двоичные вычитающие асинхронные счётчики
- •Глава 12 Недвоичные счётчики с обратной связью
- •Глава 13 Недвоичные счётчики с предварительной записью
- •Глава 14 Синхронные счётчики
- •Глава 15 Синхронные двоичные счётчики
- •Раздел 7
- •Современные виды цифровых микросхем.
- •Глава 1
- •Микросхемы малой степени интеграции (малая логика)
- •Глава 2 Программируемые логические интегральные схемы (плис).
- •Классификация плис
- •Глава 3 Программируемые логические матрицы.
- •Глава 4 Программируемые матрицы логики (pal).
- •Глава 5 Сложные программируемые логические устройства (cpld).
- •Внутреннее устройство cpld
- •Разработка цифровых устройств на cpld
- •Глава 6 Программируемые пользователем вентильные матрицы (fpga).
- •Раздел 8
- •Индикаторы.
- •Глава 1
- •Виды индикаторов.
- •Малогабаритные лампочки накаливания
- •Расчет транзисторного ключа
- •Глава 2 Газоразрядные индикаторы.
- •Глава 3 Светодиодные индикаторы.
- •Глава 4 Жидкокристаллические индикаторы.
- •Принципы работы жидкокристаллических индикаторов
- •Режимы работы жидкокристаллических индикаторов
- •Параметры жидкокристаллических индикаторов
- •Формирование цветного изображения
- •Формирование напряжения для работы жидкокристаллического индикатора
- •Глава 5 Динамическая индикация.
- •Раздел 9
- •Синтезаторы частоты.
- •Глава 1
- •Цифровой фазовый детектор.
- •Глава 2 Фазовый компаратор.
- •Глава 3 Цепи фазовой автоподстройки частоты.
- •Глава 4 Умножители частоты
- •Глава 5 Частотный детектор, построенный на основе фапч
- •Раздел 10
- •Особенности аналого-цифрового и цифро-аналогового преобразования.
- •Глава 1
- •Квантование аналогового сигнала по времени
- •Глава 2 Погрешности дискретизатора
- •Погрешность хранения
- •Погрешность выборки
- •Глава 3 Фильтры устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •Глава 4 Дискретизация сигнала на промежуточной частоте (субдискретизация)
- •Глава 5 Параллельные ацп (flash adc)
- •Глава 6 Последовательно-параллельные ацп
- •Глава 7 ацп последовательного приближения (sar adc)
- •Глава 8 Сигма-дельта ацп
- •Глава 9 Цифроаналоговые преобразователи (цап) с суммированием токов
- •Глава 10 Цифроаналоговые преобразователи r-2r
- •Раздел 11
- •11.1 Основные блоки цифровой обработки сигналов
- •Глава 1 Двоичные сумматоры
- •Глава 2 Умножители
- •Глава 3 Постоянные запоминающие устройства.
- •Глава 4 Цифровые фильтры.
- •11.2 Микросхемы прямого цифрового синтеза радиосигналов.
- •Глава 5 Фазовые аккумуляторы
- •Глава 6 Полярные модуляторы
- •Глава 7 Квадратурные модуляторы.
- •Глава 8 Интерполирующие цифровые фильтры.
- •Глава 9 Однородные интерполирующие цифровые фильтры.
- •Микросхемы цифрового приема радиосигналов
- •Глава 10 Квадратурные демодуляторы.
- •Глава 11 Децимирующие цифровые фильтры.
- •Децимирующий фильтр с конечной импульсной характеристикой
- •Глава 12 Однородные децимирующие цифровые фильтры.
- •Раздел 12 Примеры реализации цифровых устройств
- •12.1 Электронные часы
- •Разработка структурной схемы
- •Глава 2 Разработка принципиальной схемы
- •Глава 3 Разработка принципиальной схемы индикации часов
- •12.2 Последовательные порты
- •Глава 4
- •Глава 5
Глава 2 Газоразрядные индикаторы.
К сожалению малогабаритные лампочки накаливания не отличаются надёжностью, так как при включении питания через них протекает значительный ток, в результате воздействия которого на нить накаливания лампа может выйти из строя. Кроме того они боятся ударов. Все эти причины, а также большой потребляемый ток привели к тому, что в настоящее время эти индикаторы практически не используются.
Эти индикаторы в отличие от ламп накаливания управляются не напряжением, а током. Поэтому в схему приходится вводить токоограничивающий резистор. Напоминаю, что подобные индикаторы применяются для подсвечивания либо надписей, либо символических рисунков (пиктрограмм). Схема включения газоразрядного индикатора приведена на рисунке 2.1.
Рисунок 2.1.
Схема подключения индикаторной
газоразрядной лампы к цифровой ТТЛ
микросхеме
В этой схеме транзистор требуется в основном для согласования по напряжению, так как газоразрядные индикаторы питаются от источника напряжением 180 ... 300 В (напряжение зажигания газоразрядной лампы). Поэтому транзистор должен выдерживать напряжение 300 В. Что касается сопротивления R3, то оно рассчитывается по закону Ома. Необходимо от напряжения питания отнять падение напряжения на зажженной индикаторной лампе, которое можно взять из справочника по индикаторным лампам (обычно 80 В) и поделить на ток этой лампы. Падением напряжения на открытом транзисторе VT1 можно пренебречь. Например:
R3 = (Uп — UHL1)/Iл = (200 В — 80 В)/1 мА = 120 кОм.
Газоразрядные индикаторы используются как для индикации битовой информации, так и для отображения десятичной информации. При построении десятичных индикаторов катод газоразрядных индикаторов выполняется в виде десятичных цифр, как это показано на рисунке 2.2.
Рисунок 2.2.
Внешний вид газоразрядного индикатора
ИН-1
Пример индикаторной панели, выполненной на газоразрядных индикаторах, приведен на рисунке 2.3.
Рисунок 2.3.
Внешний вид индикаторной панели на
газоразрядных лампах
Для уменьшения габаритов цифрового устройства и упрощения его принципиальной схемы были разработаны специальные микросхемы дешифраторов, выдерживающие напряжение до нескольких сотен вольт, например отечественная микросхема К155ИД1. Принципиальная схема подключения десятичного газоразрядного индикатора к микросхеме К155ИД1 приведена на рисунке 2.3.
Рисунок 2.4.
Схема подключения индикаторной
газоразрядной лампы к десятичному
дешифратору
На вход этой схемы подается двоично-десятичный код. Он преобразуется микросхемой D1 в инверсный линейный десятичный код. Инверсия нужна для того, чтобы ток протекал только через тот вывод, двоично-десятичный код которого подан на вход схемы. В результате светится только тот катод, который подключен к этому выводу, а так как катод выполнен в форме десятичной цифры, то именно эта цифра и отображается на газоразрядном индикаторе.
Резистор R1 требуется для ограничения тока газоразрядного индикатора до допустимой величины. Одним резистором в схеме можно обойтись потому, что ток может протекать только через один из десяти катодов. Расчет ограничивающего ток резистора не отличается от расчета резистора R3 в схеме подключения одиночного газоразрядного индикатора, приведенной на рисунке 2.1.
В настоящее время газоразрядные индикаторы с холодным катодом практически не используются. Обычно применяются более эффективные семисегментные газоразрядные индикаторы с подогревным катодом. Применение катода с подогревом позволяет снизить анодное напряжение подобного газоразрядного индикатора до 20 ... 27 В, а семисегментный анод позволяет увеличить угол обзора индикатора.
Внешний вид одного из газоразрядных индикаторов с подогревным катодом приведен на рисунке 2.5.
Рисунок 2.5.
Внешний вид газоразрядного индикатора
с подогревным катодом
В описанных индикаторах газ светится не около катода, а в промежутке между управляющей сеткой и анодом. На рисунке 2.5 аноды четко видны в виде белых сегментов. Управляющая сетка видна как фиолетовая поверхность, а катод выполнен в виде двух тонких проводников, которые почти незаметны на переднем плане индикатора. Если индикатор поместить за зеленым светофильтром, то ни нить накала, ни управляющая сетка видны не будут.
Если на нить накаливания подать постоянное напряжение, то на ней возникнет падение напряжения. Это напряжение будет суммироваться с анодным напряжением, в результате яркость свечения сегментов в индикаторе будет неравномерной. Конструктивно нить проложена так, чтобы этот эффект свести к минимуму, однако на нить накала подогревного катода желательно подавать переменное напряжение. Так как ток в этом случае будет протекать в различном направлении, то средняя яркость свечения сегментов будет равномерной.
Схема подключения газоразрядного индикатора с подогревным катодом к семисегментному дешифратору приведена на рисунке 2.6.
Рисунок 2.6.
Схема подключения семисегментного
газоразрядного индикатора к дешифратору
На этой схеме в качестве ключей использована микросхема высоковольтных инверторов с открытым коллектором, выдерживающих напряжение на коллекторе до 30 В. Обратите внимание, что общий провод подводится к нити накала через среднюю точку трансформатора накала. Это обеспечивает равномерность свечения индикатора по всей поверхности.
В практических схемах чаще используется схема подключения газоразрядного индикатора с отрицательным напряжением питания. В этом случае дешифратор должен обеспечить вытекающий ток ключей. Подобная схема включения газоразрядного индикатора приведена на рисунке 2.7.
Рисунок 2.6.
Схема подключения семисегментного
газоразрядного индикатора к дешифратору
с вытекающим током
В этой схеме транзистор VT1 и резистор R1 образуют генератор тока с большим входным и выходным сопротивлением. В результате яркость свечения индикатора будет слабо зависеть от напряжения питания 27 В. Зависимость тока, протекающего через сегмент индикатора, в схеме, приведенной на рисунке 7, намного меньше по сравнению со схемой, изображенной на рисунке 6.
Так как задача подключения газоразрядных индикаторов является распространенной, то промышленностью были разработаны и выпускаются до настоящего времени специализированные микросхемы К176ИД3, где показанные на рисунке 3.7 генераторы тока входят в состав микросхемы. В результате данного схемотехнического решения выход дешифратора можно подключать к газоразрядному индикатору непосредственно.
В приведенных схемах подключения семисегментного газоразрядного индикатора управляющая сетка подключена непосредственно к питанию. Однако при создании схемы динамической индикации, которая будет рассмотрена несколько позднее, эта сетка используется для зажигания и гашения отдельных разрядов многоразрядного газоразрядного индикатора.