
- •Глава1 Что такое цифровые микросхемы. Виды цифровых микросхем
- •Глава 2 Области применения цифровых микросхем
- •Глава 3 Условные графические изображения цифровых микросхем (гост)
- •Параметры цифровых микросхем
- •Уровни логического нуля и единицы
- •Входные и выходные токи цифровых микросхем
- •Параметры, определяющие быстродействие цифровых микросхем
- •Описание логической функции цифровых схем
- •Раздел 2
- •Логический элемент "и"
- •Логический элемент "или"
- •Глава 2 Диодно-транзисторная логика (дтл)
- •Глава 3 Транзисторно-транзисторная логика (ттл)
- •Логические уровни ттл микросхем
- •Семейства ттл микросхем
- •Глава 4 Цифровые логические микросхемы, выполненные на комплементарных моп транзисторах (кмоп) Логические кмоп (кмдп) инверторы
- •Логические кмоп (кмдп) элементы "и"
- •Логические кмоп (кмдп) элементы "или"
- •Особенности применения кмоп микросхем
- •Логические уровни кмоп микросхем
- •Семейства кмоп микросхем
- •Глава 5 Согласование цифровых микросхем различных серий между
- •Согласование микросхем из различных серий между собой
- •Согласование по току
- •Согласование микросхем с различным напряжением питания
- •Глава 6 Регенерация цифрового сигнала (Триггер Шмитта)
- •Раздел 3 Арифметические основы цифровой техники.
- •Глава 1
- •Арифметические основы цифровой техники
- •Системы счисления
- •Десятичная система счисления
- •Двоичная система счисления
- •Восьмеричная система счисления
- •Шестнадцатеричная система счисления
- •Глава 2 Преобразование чисел из одной системы счисления в другую
- •Преобразование целых чисел
- •Глава 3 Преобразование дробной части числа
- •Раздел 4
- •2. Законы отрицания a. Закон дополнительных элементов
- •B. Двойное отрицание
- •C. Закон отрицательной логики
- •3. Комбинационные законы
- •A. Закон тавтологии (многократное повторение)
- •B. Закон переместительности
- •Совершенная дизъюктивная нормальная форма (сднф)
- •Совершенная конъюктивная нормальная форма (скнф)
- •Глава 3 Дешифраторы (декодеры)
- •Десятичный дешифратор (декодер)
- •Семисегментный дешифратор
- •Глава 4 Шифраторы (кодеры)
- •Глава 5 Мультиплексоры
- •Особенности построения мультиплексоров на ттл элементах
- •Особенности построения мультиплексоров на кмоп элементах
- •Глава 6 Демультиплексоры
- •Раздел 5 Генераторы
- •Глава 1
- •Генераторы периодических сигналов
- •Усилительные параметры кмоп инвертора
- •Глава 2 Осцилляторные схемы генераторов
- •Глава 3 Мультивибраторы
- •Глава 4 Особенности кварцевой стабилизации частоты цифровых генераторов
- •Глава 5 Одновибраторы (ждущие мультивибраторы)
- •Укорачивающие одновибраторы
- •Расширяющие одновибраторы (ждущие мультивибраторы)
- •Раздел 6 Последовательностные устройства (цифровые устройства с памятью)
- •Глава 1
- •Триггеры
- •Глава 2 rs триггер
- •Синхронный rs триггер
- •Глава 3 d триггеры, работающие по потенциалу (статические d триггеры)
- •Глава 4 Явление метастабильности
- •Глава 5 d триггеры, работающие по фронту (динамические d триггеры)
- •Глава 6 t триггеры
- •Глава 7 jk триггер
- •Глава 8 Регистры
- •Параллельные регистры
- •Глава 9 Последовательные (сдвиговые) регистры
- •Глава 10 Универсальные регистры
- •Глава 11 Счётчики
- •Двоичные асинхронные счётчики
- •Двоичные вычитающие асинхронные счётчики
- •Глава 12 Недвоичные счётчики с обратной связью
- •Глава 13 Недвоичные счётчики с предварительной записью
- •Глава 14 Синхронные счётчики
- •Глава 15 Синхронные двоичные счётчики
- •Раздел 7
- •Современные виды цифровых микросхем.
- •Глава 1
- •Микросхемы малой степени интеграции (малая логика)
- •Глава 2 Программируемые логические интегральные схемы (плис).
- •Классификация плис
- •Глава 3 Программируемые логические матрицы.
- •Глава 4 Программируемые матрицы логики (pal).
- •Глава 5 Сложные программируемые логические устройства (cpld).
- •Внутреннее устройство cpld
- •Разработка цифровых устройств на cpld
- •Глава 6 Программируемые пользователем вентильные матрицы (fpga).
- •Раздел 8
- •Индикаторы.
- •Глава 1
- •Виды индикаторов.
- •Малогабаритные лампочки накаливания
- •Расчет транзисторного ключа
- •Глава 2 Газоразрядные индикаторы.
- •Глава 3 Светодиодные индикаторы.
- •Глава 4 Жидкокристаллические индикаторы.
- •Принципы работы жидкокристаллических индикаторов
- •Режимы работы жидкокристаллических индикаторов
- •Параметры жидкокристаллических индикаторов
- •Формирование цветного изображения
- •Формирование напряжения для работы жидкокристаллического индикатора
- •Глава 5 Динамическая индикация.
- •Раздел 9
- •Синтезаторы частоты.
- •Глава 1
- •Цифровой фазовый детектор.
- •Глава 2 Фазовый компаратор.
- •Глава 3 Цепи фазовой автоподстройки частоты.
- •Глава 4 Умножители частоты
- •Глава 5 Частотный детектор, построенный на основе фапч
- •Раздел 10
- •Особенности аналого-цифрового и цифро-аналогового преобразования.
- •Глава 1
- •Квантование аналогового сигнала по времени
- •Глава 2 Погрешности дискретизатора
- •Погрешность хранения
- •Погрешность выборки
- •Глава 3 Фильтры устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •Глава 4 Дискретизация сигнала на промежуточной частоте (субдискретизация)
- •Глава 5 Параллельные ацп (flash adc)
- •Глава 6 Последовательно-параллельные ацп
- •Глава 7 ацп последовательного приближения (sar adc)
- •Глава 8 Сигма-дельта ацп
- •Глава 9 Цифроаналоговые преобразователи (цап) с суммированием токов
- •Глава 10 Цифроаналоговые преобразователи r-2r
- •Раздел 11
- •11.1 Основные блоки цифровой обработки сигналов
- •Глава 1 Двоичные сумматоры
- •Глава 2 Умножители
- •Глава 3 Постоянные запоминающие устройства.
- •Глава 4 Цифровые фильтры.
- •11.2 Микросхемы прямого цифрового синтеза радиосигналов.
- •Глава 5 Фазовые аккумуляторы
- •Глава 6 Полярные модуляторы
- •Глава 7 Квадратурные модуляторы.
- •Глава 8 Интерполирующие цифровые фильтры.
- •Глава 9 Однородные интерполирующие цифровые фильтры.
- •Микросхемы цифрового приема радиосигналов
- •Глава 10 Квадратурные демодуляторы.
- •Глава 11 Децимирующие цифровые фильтры.
- •Децимирующий фильтр с конечной импульсной характеристикой
- •Глава 12 Однородные децимирующие цифровые фильтры.
- •Раздел 12 Примеры реализации цифровых устройств
- •12.1 Электронные часы
- •Разработка структурной схемы
- •Глава 2 Разработка принципиальной схемы
- •Глава 3 Разработка принципиальной схемы индикации часов
- •12.2 Последовательные порты
- •Глава 4
- •Глава 5
Классификация плис
В настоящее время программируемые логические интегральные схемы развиваются по нескольким направлениям, поэтому возникла необходимость как то различать эти микросхемы. Классификация программируемых логических интегральных схем (ПЛИС) приведена на рисунке 2.1.
Рисунок 2.1.
Классификация программируемых логических
интегральных схем (ПЛИС)
Следует отметить, что программируемые логические матрицы (ПЛМ) реализуют хорошо известные принципы создания цифровой комбинационной схемы по таблице истинности (СДНФ). Применение постоянных запоминающих устройств (ПЗУ) в качестве комбинационной схемы позволяет вообще обойтись без составления комбинационной функции и ее минимизации. Области применения этих микросхем сразу определились. ПЗУ применялись для создания комбинационных схем с малым количеством входов. При росте количества входов сложность внутреннего устройства ПЗУ и его цена резко возрастали (по квадратичному закону). ПЛМ позволяли реализовывать таблицы истинности с относительно малым количеством единичных сигналов на выходе и большим количеством входных сигналов, либо хорошо минимизирующиеся логические функции.
Первоначально цифровые устройства с памятью реализовывали либо на нескольких ПЛМ, либо добавляли внешние триггеры , затем стали включать их в состав программируемых логических устройств. По мере увеличения степени интеграции микросхем возникла необходимость объединять полученные сложные микросхемы на одном кристалле. В результате возникли сложные программируемые логические устройства (CPLD). В них появилась возможность программировать не только таблицу истинности комбинационного устройства, но и линии соединения входов и выходов ПЛД между собой. Таким образом можно считать CPLD дальнейшим развитием ПЛМ и ПЛД.
Точно так же развивались цифровые устройства на ПЗУ. Сначала к их выходам добавили триггер. Естественно предоставили возможность отключать его при необходимости. Затем несколько этих схем разместили на одном кристалле и предоставили возможность программировать соединения их входов и выходов между собой. Подобные устройства называются FPGA.
Глава 3 Программируемые логические матрицы.
Первым представителем большого класса программируемых логических устройств (ПЛИС) стали программируемые логические матрицы (ПЛМ). В зарубежной литературе они называются PLA — Programmable logic Array. Обобщенная структура ПЛМ приведена на рисунке 3.1.
Рисунок 3.1.
Обобщенная структура программируемых
логических матриц (ПЛМ)
Основная идея работы ПЛМ заключается в реализации логической функции, представленной в СДНФ — дизъюнктивной нормальной форме. На рисунке четко прослеживаются логические элементы "И", способные реализовать любой минтерм СДНФ и логические элементы "ИЛИ", осуществляющие суммирование термов, требующихся по логическому выражению СДНФ. В схеме ПЛМ, приведенной на рисунке 3.1, ранг терма ограничен количеством входов и равен четырем, количество термов тоже равно четырем. В реально выпускавшихся микросхемах программируемых логических матриц (ПЛМ) количество входов было равно шестнадцати (максимальный ранг минтерма — 16), количество термов равно 32 и количество выходов микросхемы — 8.
Примерами реализации программируемых логических матриц могут служить отечественные микросхемы K556PT1, PT2, PT21. В этих микросхемах программирование осуществлялось при повышенном напряжении питания. Там, где требовалось сохранить плавкую перемычку на ее вход и выход подавалось высокое напряжение, там, где соединение не требовалось, на вход подавался потенциал корпуса (логический ноль), а на выход — напряжение питания. Перемычка из поликристаллического кремния под воздействием высокой температуры, вызванной током короткого замыкания, испарялась.
Следует отметить, что полная принципиальная схема ПЛМ получается достаточно громоздкой (см. рисунок 3.1). Поэтому в зарубежной литературе обычно применяется шинное представление проводников. Логический элемент "И", реализующий минтерм СДНФ, изображается как одиночная горизонтальная строка с условно-графическим обозначением схемы "И". Ко входам этого элемента подводится многоразрядная шина, а на выходе подключен одиночный проводник. Если входной проводник подключается ко входу логического элемента "И" (перемычка сохранена), то это место обозначается крестиком 'x', а если соединение отсутствует (перемычка сожжена), то крестик не проставляется. Аналогично обозначаются и многовходовые элементы "ИЛИ". Пример подобного изображения схемы ПЛМ (PLA) приведен на рисунке 3.2.
Рисунок 3.2.
Представление внутренней структуры
схем ПЛМ, принятое в зарубежной литературе
По схеме четко можно восстановить реализуемую им логическую функцию. На рисунке 3.2 реализованы две логические функции f1 и f2:
Недостаток рассмотренной архитектуры ПЛМ — слабое использование ресурсов программируемой матрицы логических элементов "ИЛИ". Данное обстоятельство привело к появлению ещё одного вида ПЛМ — PAL.