Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4_Termod_i_stat_fizika_zo.doc
Скачиваний:
86
Добавлен:
02.05.2015
Размер:
676.86 Кб
Скачать

Термодинамика и статистическая физика

Методические указания и контрольные задания для студентов заочного обучения

Шелкунова З.В., Санеев Э.Л.

Методическое указания и контрольные задания для студентов заочного обучения инженерно-технических и технологических специальностей. Содержат разделы программ ”Статистическая физика”, ”Термодинамика”, примеры решения типовых задач и варианты контрольных заданий.

Ключевые слова: Внутренняя энергия, теплота, работа; изопроцессы, энтропия: функции распределения: Максвелла, Больцмана, Бозе – Эйнштейна; Ферми – Дирака; Энергия Ферми, теплоемкость, характеристическая температура Эйнштейна и Дебая.

Редактор Т.Ю.Артюнина

Подготовлено в печать г. Формат 6080 1/16

Усл.п.л. ; уч.-изд.л. 3,0; Тираж ____ экз. Заказ № .

___________________________________________________

РИО ВСГТУ, Улан-Удэ, Ключевская, 40а

Отпечатано на ротапринте ВСГТУ, Улан-Удэ,

Ключевская, 42.

Федеральное агентство по образованию

Восточно-Сибирский государственный

технологический университет

ФИЗИКА №4

(Термодинамика и статистическая физика)

Методические указания и контрольные задания

для студентов заочного обучения

Составитель: Шелкунова З.В.

Санеев Э.Л.

Издательство ВСГТУ

Улан-Удэ, 2009

Статистическая физика и термодинамика

Тема 1

Динамические и статистические закономерности в физике. Термодинамический и статистический методы. Элементы молекулярно-кинетической теории. Макроскопическое состояние. Физические величины и состояния физических систем. Макроскопические параметры как средние значения. Тепловое равновесие. Модель идеального газа. Уравнение состояния идеального газа. Понятие о температуре.

Тема 2

Явления переноса. Диффузия. Теплопроводность. Коэффициент диффузии. Коэффициент теплопроводности. Температуропроводность. Диффузия в газах, жидкостях и твердых телах. Вязкость. Коэффициент вязкости газов и жидкостей.

Тема 3

Элементы термодинамики. Первое начало термодинамики. Внутренняя энергия. Интенсивные и экстенсивные параметры.

Тема 4

Обратимые и необратимые процессы. Энтропия. Второе начало термодинамики. Термодинамические потенциалы и условия равновесия. Химический потенциал. Условия химического равновесия. Цикл Карно.

Тема 5

Функции распределения. Микроскопические параметры. Вероятность и флуктуации. Распределение Максвелла. Средняя кинетическая энергия частицы. Распределение Больцмана. Теплоемкость многоатомных газов. Ограниченность классической теории теплоемкости.

Тема 6

Распределение Гиббса. Модель системы в термостате. Каноническое распределение Гиббса. Статистический смысл термодинамических потенциалов и температуры. Роль свободной энергии.

Тема 7

Распределение Гиббса для системы с переменным числом частиц. Энтропия и вероятность. Определение энтропии равновесной системы через статистический вес микросостояния.

Тема 8

Функции распределения Бозе и Ферми. Формула Планка для разновесного теплового излучения. Порядок и беспорядок в природе. Энтропия как количественная мера хаотичности. Принцип возрастания энтропии. Переход от порядка к беспорядку о состоянии теплового равновесия.

Тема 9

Экспериментальные методы исследования колебательного спектра кристаллов. Понятие о фононах. Законы дисперсии для акустических и оптических фононов. Теплоемкость кристаллов при низких и высоких температурах. Электронные теплоемкость и теплопроводность.

Тема 10

Электроны в кристаллах. Приближение сильной и слабой связи. Модель свободных электронов. Уровень Ферми. Элементы зонной теории кристаллов. Функция Блоха. Зонная структура энергетического спектра электронов.

Тема 11

Поверхность Ферми. Число и плотность числа электронных состояний в зоне. Заполнения зон: металлы, диэлектрики и полупроводники. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n переходе. Транзистор.

Тема 12

Электропроводность металлов. Носители тока в металлах. Недостаточность классической электронной теории. Электронный ферми-газ в металле. Носители тока как квазичастицы. Явление сверхпроводимости. Куперовское спаривание электронов. Туннельный контакт. Эффект Джозефсона и его применение. Захват и квантование магнитного потока. Понятие о высокотемпературной проводимости.

СТАТИСТИЧЕСКАЯ ФИЗИКА. ТЕРМОДИНАМИКА

Основные формулы

1. Количество вещества однородного газа (в молях):

, или ,

где N-число молекул газа; NA- число Авогадро; m-масса газа; -молярная масса газа.

Если система представляет смесь нескольких газов, то количество вещества системы

,

или

,

где i, Ni, mi, i -соответственно количество вещества, число молекул, масса, молярная масса i-й компоненты смеси.

2. Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа):

где m - масса газа; - молярная масса; R - универсальная газовая постоянная; = m/ - количество вещества; T-термодинамическая температура Кельвина.

3. Опытные газовые законы, являющиеся частными случаями уравнения Клапейрона-Менделеева для изопроцессов:

  1. закон Бойля-Мариотта

(изотермический процесс - Т=const; m=const):

,

или для двух состояний газа:

,

где p1 и V1 - давление и объем газа в начальном состоянии; p2 и V2 - те же величины в конечном состоянии;

  1. закон Гей-Люссака (изобарический процесс - p=const, m=const):

или для двух состояний:

где V1 и Т1 - объем и температура газа в начальном состоянии; V2 и Т2 - те же величины в конечном состоянии;

  1. закон Шарля (изохорический процесс - V=const, m=const):

или для двух состояний:

где р1 и Т1 - давление и температура газа в начальном состоянии; р2 и Т2 - те же величины в конечном состоянии;

  1. объединенный газовый закон (m=const):

где р1, V1, Т1 - давление, объем и температура газа в начальном состоянии; р2, V2, Т2 - те же величины в конечном состоянии.

4. Закон Дальтона, определяющий давление смеси газов:

р = р1 + р2 + ... +рn

где pi - парциальные давления компонент смеси; n - число компонентов смеси.

5. Молярная масса смеси газов:

где mi - масса i-го компонента смеси; i = mi/i - количество вещества i-го компонента смеси; n - число компонентов смеси.

6. Массовая доля i i-го компонента смеси газа (в долях единицы или процентах):

где m - масса смеси.

7. Концентрация молекул (число молекул в единице объема):

где N-число молекул, содержащихся в данной системе;  - плотность вещества. Формула справедлива не только для газов, но и для любого агрегатного состояния вещества.

8. Основное уравнение кинетической теории газов:

,

где <> - средняя кинетическая энергия поступательного движения молекулы.

9. Средняя кинетическая энергия поступательного движения молекулы:

,

где k - постоянная Больцмана.

10. Средняя полная кинетическая энергия молекулы:

,

где i - число степеней свободы молекулы.

11. Зависимость давления газа от концентрации молекул и температуры:

p = nkT.

12. Скорости молекул:

средняя квадратичная ;

средняя арифметическая ;

наиболее вероятная ,

где mi - масса одной молекулы.

13. Относительная скорость молекулы:

u = v/ vв,

где v - скорость данной молекулы.

14. Удельные теплоемкости газа при постоянном объеме (сv) и при постоянном давлении (ср):

; .

15. Связь между удельной (с) и молярной (С) теплоемкостями:

; C = c.

16. Уравнение Роберта Майера:

Cp -Cv = R.

17. Внутренняя энергия идеального газа:

18. Первое начало термодинамики:

,

где Q - теплота, сообщенная системе (газу); dU - изменение внутренней энергии системы; А - работа, совершенная системой против внешних сил.

19. Работа расширения газа:

в общем случае ;

при изобарическом процессе ;

изотермическом процессе ;

при адиабатическом процессе ,

или ,

где - показатель адиабаты.

20. Уравнения Пуассона, связывающие параметры идеального газа при адиабатическом процессе:

; ;

;

21. Термический к.п.д. цикла:

;

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]