Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Зарипова Концепции

.pdf
Скачиваний:
30
Добавлен:
02.05.2015
Размер:
5.23 Mб
Скачать

Рис. 7.7 Главная последовательность звезд (диаграмма Герцшрунга-Рассела)

Астрономы не могут наблюдать жизнь одной звезды от начала до конца, потому что даже самые короткоживущие звезды существуют миллионы лет - дольше жизни всего человечества. Изменение со временем физических характеристик и химического состава звезд, т.е. звездную эволюцию, астрономы изучают на основе сопоставления характеристик множества звезд, находящихся на разных стадиях эволюции.

Физические закономерности, связывающие наблюдаемые характеристики звезд, отражаются на диаграмме цвет-светимость - диаграмме Герцшпрунга - Ресселла, на которой звезды образуют отдельные группировки - последовательности: главную последовательность звезд, последовательности сверхгигантов, ярких и слабых гигантов, субгигантов, субкарликов и белых карликов. Большую часть своей жизни любая звезда находится на так называемой главной последовательности диаграммы цвет-светимость. Все остальные стадии эволюции звезды до образования компактного остатка занимают не более 10% от этого времени. Именно поэтому большинство звезд, наблюдаемых в нашей Галактике, - скромные красные карлики с массой Солнца или меньше.

Главная последовательность включает в себя около 90% всех наблюдаемых звезд.

81

Срок жизни звезды и то, во что она превращается в конце жизненного пути, полностью определяется ее массой. Звезды с массой больше солнечной живут гораздо меньше Солнца, а время жизни самых массивных звезд - всего миллионы лет. Для подавляющего большинства звезд время жизни - около 15 млрд. лет. После того как звезда исчерпает свои источники энергии она начинает остывать и сжиматься. Конечным продуктом эволюции звезд являются компактные массивные объекты, плотность которых во много раз больше, чем у обычных звезд. Звезды разной массы приходят в итоге к одному из трех состояний: белые карлики, нейтронные звезды или черные дыры.

Если масса звезды невелика, то силы гравитации сравнительно слабы и сжатие звезды (гравитационный коллапс) прекращается. Она переходит в устойчивое состояние белого карлика. Если масса превышает критическое значение, сжатие продолжается. При очень высокой плотности электроны, соединяясь с протонами, образуют нейтроны. Вскоре уже почти вся звезда состоит из одних нейтронов и имеет такую громадную плотность, что огромная звездная масса сосредоточивается в очень небольшом шаре радиусом несколько километров и сжатие останавливается - образуется нейтронная звезда. Если же масса звезды будет настолько велика, что даже образование нейтронной звезды не остановит гравитационного коллапса, то конечным этапом эволюции звезды будет черная дыра.

Главная звездная последовательность показывает связь температуры и светимости. Звезды рождаются из газопылевой туманности, состоящей из гелия и водорода. При закручивании туманности образуются участки, которые разделяются на фрагменты. Звезда не рождается одна. Чаще всего в одном месте туманности рождаются сразу несколько протозвезд. При отделении каждого фрагмента освобождается энергия в виде инфракрасного излучения. Дальнейшее сжатие протозвезд под действием гравитационных сил повышает температуру звезд, и освободившаяся энергия излучается в виде красного света, образуются красные гиганты. При дальнейшем сжатии звезд температура повышается настолько, то звезда «зажигается», то есть, начинаются реакции термоядерного синтеза.

12 H 13H 24 He 01n Q

Звезда «садится» на главную последовательность, там находятся все живые звезды (то есть, звезды, в которых идут термоядерные реакции). Когда кончаются запасы водорода, звезда начинает стареть, и процесс старения связан с массой звезды. Если масса звезды меньше или равна 1,2 массы Солнца, то образуется гелиевое ядро, на поверхности которого в тонком слое еще горит оставшийся водород. Само ядро начинает сжиматься под действием гравитационных сил, температура повышается, и образуется плотное горячее ядро из гелия. В этих условиях из гелия не образуется более тяжелых элементов. Внешняя оболочка постепенно расширяется, и образуется так называемая планетарная туманность. Оболочка горит красным светом, звезда становится красным гигантом. Белый карлик (ядро) горит еще несколько миллионов лет, после чего превращается в чѐрного карлика. Такова судьба Солнца.

Судьба более массивных звезд, масса которых превышает 1,2 массы Солнца, значительно более «трагична». Такие звезды живут несколько сотен миллионов лет. Если масса звезды составляет примерно 2,5-3 массы Солнца, то после прекращения термоядерных реакций в ядре звезды гравитационные силы начинают очень быстро сжимать ядро звезды. В ядре крайне быстро, скачком, образуется железо, а давление

82

повышается настолько, что электроны «вдавливаются» в ядра атомов, в результате чего образуется нейтронная железная звезда. Происходит взрыв, разлетается остаточное вещество, такой процесс называется взрывом сверхновой. В 1054 году астрономы зарегистрировали взрыв сверхновой. Остается очень слабо светящееся быстро вращающееся ядро. Оно стремительно сжимается до радиуса 8-10 км, плотность составляет ρ=1015 г/см3, период обращения – 1,3 секунды. Звезда становится пульсаром, излучающим пучки горячих электронов с четкой периодичностью. В середине XX века сигналы, идущие от пульсаров, приняли за сигналы внеземных цивилизаций, этот феномен тогда получил название GLM (Green Little Men - маленькие зеленые человечки). (

Постепенно вращение замедляется, и звезда прекращает своѐ существование.

Будущее Вселенной

Э. Хаббл обнаружил эффект «красного смещения» в спектрах удаленных галактик. «Красное смещение» означает понижение частот электромагнитного излучения при удалении источника света от наблюдателя. Т.е. если источник света удаляется от нас, то воспринимаемая частота излучений уменьшается, а длины волн увеличиваются, линии видимого спектра смещаются в сторону более длинных красных волн. Оказалось, что «красное смещение» пропорционально расстоянию до источника света. Исследования Э. Хаббла подтвердили, что удаленные от нас галактики разбегаются, т.е. Вселенная находится в состоянии расширения, а значит нестационарна.

Будет ли разлет галактик продолжаться всегда или расширение сменится сжатием? Для этого необходимо рассчитать, хватит ли сил гравитации остановить расширение (расширение идет по инерции, действуют лишь силы тяготения).

Но... оказалось, что все не так просто, поскольку мы не знаем точно плотность (массу) Вселенной. Как определить массу, а следовательно и плотность Вселенной?

В галактиках много темной, скрытой массы. Этой массы почти в 10 раз больше (90 %), чем "видимой массы". Что же это за невидимое вещество? Вопервых, это масса черных дыр. Во-вторых, необходимо учитывать массу элементарных частиц, которых очень много. Например, нейтрино, масса которых очень мала (составляет одну тридцатимиллионную массы протона) - и в этом случае 90-99% всей массы Вселенной скрыто в виде массы нейтрино.

Однако сегодня ученые говорят о новейшей революция в космологии.

1. Во Вселенной доминирует вакуум; по плотности энергии он превосходит все "обычные" формы космической энергии, вместе взятые; 2. Динамикой космологического расширения управляет антигравитация.

Вывод- Вселенная будет расширяться неограниченно долго

Вернемся к началу лекции: "Как образовалась Вселенная?"

Итак, ученые выдвигают теории, что развитие Вселенной началось с "первоначального вещества" с плотностью 1036 г/см3 с температурой 1028 К. "Частицы" в этом первоначальном сгустке обладают огромной кинетической энергией, и вещество начинает расширяться, при этом температура и плотность Вселенной непрерывно уменьшаются.

Возможность зарождения Вселенной из "ничего". В целом Вселенная электронейтральна, поэтому она могла родиться из нулевого заряда. Простая аналогия: Энергия "ничего" равна нулю, но и энергия замкнутой Вселенной равна нулю, поэтому Вселенная возникла из "ничего".

83

Заключение

1.Расширение Вселенной было установлено Э. Хабблом, сравнивая скорости разбегания, измеренные по красному смещению в спектрах галактик расстояния до них.

2.Фридманом предложены три модели развития Вселенной, определяемые средней плотностью вещества в ней.

3.Леметр пришел к проблеме "начала" из точки, а также первоначальных условий, в которой находилась Вселенная. Эти условия характеризуются наличием высокой температуры и давления в сингулярности, в которой была сосредоточена материя. Их называют Большим взрывом.

4.Гамов разработал модель горячей Вселенной, которую назвал космологией Большого взрыва. Теория получила подтверждение после открытия фонового излучения, которое осталось со времени Большого взрыва и названо реликтовым.

5.По мере расширения и охлаждения во Вселенной происходили процессы разрушения существовавших раньше симметрий и возникновения на этой основе новых структур.

6.Гут и Линде разработали разные варианты первых долей секунды после "начала", называемые моделями инфляционной, или раздувающейся, Вселенной.

7.Дальнейшее развитие Вселенной разделяют на четыре эры: адронную, лептонную, излучения и вещества. В адронную и лептонную эру, продолжавшуюся 10 с, температура Вселенной после взрыва упала до б млрд градусов и образовался основной химический состав вещества Вселенной, состоящий из 75% водорода и 25% гелия. На стадии излучения происходило непрерывное превращение вещества в излучение и, наоборот, излучения в вещество. Вследствие этого между веществом и излучением сохранялась симметрия.

Рис. 7.8. Модели развития Вселенной по А.А.Фридману

84

Глава 8. Концепции о происхождении и строении Солнечной системы

Общие сведения о нашей галактике

Наша Галактика - Млечный путь - гигантский диск, диаметр которого около 100 тыс. световых лет, а толщина - около 1500 световых лет.

Галактика может быть представлена в виде спиральной структуры: туманности и горячие массивные звезды распределены вдоль ветвей спирали.

Рис. 8.1. Структура Млечного пути Наша галактика включает более 200 млрд. звезд разной светимости и цвета. За

"окрестности Солнца" принято принимать тот объем Галактики, в котором современными средствами возможно можно наблюдать и изучать звезды разных типов. Этот объем состоит примерно из 1,5 тысячи звезд. Расстояние до дальних звезд составляет 20 парсек. В настоящее время исследованы почти все звезды за исключением совсем карликовых. В радиусе около 5 парсек от Солнца исследованы абсолютно все звезды. Их насчитывается около 100. Большинство представляют собой слабые красные карлики с массой в 3-10 раз меньше, чем у Солнца. Звезд, похожих на Солнце около 6 %. Белых и желтоватых звезд с массами от 1,5 до 2 солнечных вообще единицы. Более массивных звезд в окрестностях Солнца не найдено, что указывает на их большую редкость. Солнцежелтый карлик, звезда 2-го или 3-го поколения.

Учеными также обнаружено 7 белых карликов. Слабый красный карлик Проксима, компонент тройной системы alpha-Центавра, считается ближайшей от Солнца звездой. Расстояние до Проксимы - 1,31 пк, т.е свет от нее идет 4,2 года. Расстояние от Солнца до ядра Галактики составляет около 30 тыс. световых лет. Наше Солнце - одна из звезд на периферии Галактики вблизи от ее экваториальной плоскости.

85

Расстояние от Солнца до ядра Галактики составляет около 30 тыс. световых лет.

Рис. 5.2. Солнечная система

Основные факты о Солнечной системе

1.Время образования - 4.5-5 млрд. лет назад.

2.В Солнечной системе осталось 8 планет. Такое решение принято 24 августа 2006 года в Праге на 26-й Ассамблее Международного астрономического союза. После передела Солнечная система стала выглядеть удивительно гармонично: планеты земной группы — пояс астероидов — планеты-гиганты — пояс Койпера. Среди планет воцарился порядок, какой и должен быть в системе, населенной разумными представителями Вселенной. Основная масса системы сосредоточена в Солнце (99.9%), но 99% момента количества движения («запаса вращения» системы) связано с движением планет.

3.Все планеты условно делятся на 2 группы:

а) Меркурий, Венера, Земля, Марс - планеты небольшого размера с плотностью =3-5.5 г/см3; б) Юпитер, Сатурн, Уран, Нептун - планеты - гиганты с небольшой плотностью =1-2 г/см3;

4.Необходимо также выделить пояс астероидов, занимающий место между Марсом и Юпитером

5. Орбиты всех планет - почти круговые, и все они лежат примерно в плоскости эклиптики (в плоскости Солнечного экватора). Все планеты обращаются вокруг Солнца в одном направлении (совпадающем с направлением вращения Солнца), как и почти все спутники вокруг своих планет.

6.Расстояния планет от Солнца подчиняются эмпирическим формулам и составляют некоторую прогрессию, определяемую правилом Тициуса-Боде.

7.Наличие в Солнечной системе метеоров и комет.

Гипотезы происхождения Солнечной системы

Объединенная гипотеза Канта-Лапласа - солнечная система возникла из газопылевой туманности.

86

Немецкий философ Иммануил Кант в 1755 году впервые изложил идею о возникновении Солнечной системы из облака холодных пылинок, находящихся в хаотическом движении. Планеты по Канту формируются из того же газопылевого облака, что и Солнце. В 1796 году французский ученый Пьер Симон Лаплас описал образование Солнца и Солнечной системы из медленно вращающейся раскаленной газовой туманности. Под действием гравитации центральная часть протосолнца сжималась, скорость его вращения увеличивалась, поэтому оно приобретало сплюснутую форму. Сгустки отделялись от протосолнца и затем охлаждались. Вещество, из которого образовались планеты, первоначально по Лапласу было в горячем, расплавленном состоянии. Но потом стало ясно, что Земля никогда не была ни газовой, ни раскаленной. Такая туманность находилась в состоянии вращения и под действием сил тяготения сжималась, при этом вращение все убыстрялось. От туманности вследствие центробежных сил отделялись кольца, из которых впоследствии образовались планеты. Однако такая модель не объясняет необычное распределение момента количества движения.

Гипотеза Джинса образования планет Солнечной системы.

Предложенная в 1916 году Джеймсом Джинсом новая теория, согласно которой вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты, должна была объяснить парадокс распределения момента импульса. Однако в настоящее время специалисты не поддерживают эту теорию.

Рис. 8.3. Схема образования планет по Дж. Джинсу В 1935 году Рассел предположил, что Солнце было двойной звездой. Вторая звезда

была разорвана силами гравитации при тесном сближении с другой, третьей звездой. Девятью годами позже Хойл высказал теорию, что Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система. В сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали. Элементы многих из перечисленных выше теорий использует современная космогония.

Сегодняшний уровень развития науки четко указывает, что невозможно построить модель солнечной системы с учетом только гравитационных сил. Шведские астрофизики Х.Альвен и Г.Аррениус разрабатывают модель, учитывающую влияние различных

87

процессов - гравитационных, магнитогидродинамических, электромагнитных и плазменных.

В настоящее время общепризнанной является теория формирования планетной

системы в четыре этапа.

*Первоначальное газопылевое облако достигло заметной плотности и начало сжиматься под действием гравитационных сил. Это облако уже содержало не только первичные водород и гелий, но и многочисленные тяжѐлые элементы (металлы). Кроме того, облако обладало некоторым начальным угловым моментом. Планетная система формируется из того же протозвездного пылевого вещества, что и звезда, и в те же сроки.

*В процессе сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска. Первоначальное сжатие протозвездного пылевого облака происходит при потере им устойчивости. Центральная часть сжимается самостоятельно и превращается в протозвезду. Другая часть облака с массой, примерно в десять раз меньше центральной части, продолжает медленно вращаться вокруг центрального утолщения, а на периферии каждый фрагмент сжимается самостоятельно. При этом стихает первоначальная турбулентность, хаотичное движение частиц. Газ конденсируется в твердое вещество, минуя жидкую фазу.

*При достижении некоторой пороговой плотности, частицы пыли начали сталкиваться друг с другом, и таким образом кинетическая энергия сжимающегося газопылевого облака привела к росту температуры. Наиболее сильно нагревались центральные области диска. Образуются более крупные твердые пылевые крупинки – частицы. Чем крупнее образовавшиеся крупинки, тем быстрее они падают на центральную часть пылевого облака. Часть вещества, обладающая избыточным моментом вращения, образует тонкий газопылевой слой – газопылевой диск. Вокруг протозвезды формируется протопланетное облако – пылевой субдиск. Протопланетное облако становится все более плоским, сильно уплотняется. Из-за гравитационной неустойчивости

впылевом субдиске образуются отдельные мелкие холодные сгустки, которые, сталкиваясь друг с другом, образуют все более массивные тела – планетезимали. В процессе формирования планетной системы часть планетезималей разрушилась в результате столкновений, а часть объединилась. Образуется рой допланетных тел размером около 1 км, количество таких тел очень велико – миллиарды. Затем допланетные тела объединяются в планеты. Аккумуляция планет продолжается миллионы лет, что очень незначительно по сравнению со временем жизни звезды.

*При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться (протозвезда). Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счѐт гидродинамических неустойчивостей, в них стали развиваться отдельные сгущения — протопланеты

*Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области запустилась термоядерная реакция горения водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.

88

Протосолнце нагревает внутреннюю область протопланетного облака до 400 К, образовав зону испарения. Под действием солнечного ветра и давления света легкие химические элементы (водород и гелий) оттесняются из окрестностей молодой звезды. В далекой области, на расстоянии свыше 5 а.е., образуется зона намерзания с температурой примерно 50 К. Это приводит к различиям в химическом составе будущих планет.

Земля как планета и природное тело

Земля — наибольшая из планет земной группы. Она обладает атмосферой средней мощности, значительная часть земной поверхности покрыта тонким неоднородным слоем воды, а вокруг нее обращается величественный спутник, диаметр которого равен четверти земного диаметра. По форме Земля близка к двуосному эллипсоиду. На XVI съезде Международного астрономического союза, состоявшемся в Гренобле (Франция) в августе 1976 г., приняты следующие элементы земного сфероида: экваториальный (наибольший) радиус Rэ = 6378,140 км, полярный (наименьший) радиус Rп = = 6356,755 км, различие в радиусах Rэ - Rп = 21,385 км. За средний радиус Земли принимают Rcp = 6371 км, который соответствует радиусу шара по объему, равному объему эллипсоида Земли.

Относительно геоида производятся измерения высот на суше и глубин в океане. Наибольшую высоту над поверхностью мирового океана — 8848 км — имеет вершина Джомолунгма (Эверест), находящаяся в Гималаях (Евразия), а наибольшую глубину — 11 022 м — имеет Марианский желоб в Тихом океане.

Земля участвует в двух движениях, происходящих с запада на восток: она вращается вокруг собственной оси и обращается вокруг Солнца. Положение точки или тела на земной поверхности определяют с помощью географической сетки. Географическую сетку образуют полюса, параллели и меридианы. Точки пересечения оси вращения Земли с ее поверхностью называются географическими полюсами. Имеются северный и южный географические полюса. Большой круг земной поверхности, образованный пересечением плоскости, проходящей через центр Земли перпендикулярно оси ее вращения, называется экватором. Он делит земной шар на Северное и Южное полушария. Линии сечения поверхности Земли плоскостями, параллельными плоскости экватора, называются параллелями, а линии сечения, образованные плоскостями, проходящими через ось вращения Земли, называются меридианами. Для определения положения точки на земной поверхности используют две географические координаты — широту и долготу.

Орбита обращения Земли вокруг Солнца близка к окружности и представляет собой эллипс с малым эксцентриситетом (е = = 0,017). Солнце находится не в центре орбиты, а в одном из фокусов эллипса. Поэтому на протяжении года расстояние от Солнца до Земли периодически меняется: от 147,1 млн км (3 января) до 152,1 млн км (4 июля). Большая полуось земной орбиты определяет среднее расстояние Земли от Солнца и равно 149,6 млн км. Фокус орбиты отстоит от центра эллипса на 2,5 млн км. Самая близкая к Солнцу точка земной орбиты называется перигелием, а самая далекая — афелием или апогелием. В соответствии с видимым движением Солнца земная поверхность разделена на тепловые (климатические) пояса. Области земной поверхности, отстоящие от полюсов на 23°27', называются полярными кругами, или северным и южным холодным поясами. На границах полярных кругов один раз в году наблюдается полярный день и полярная ночь. Пояс земной поверхности, ограниченный по обе стороны от экватора

89

географическими параллелями 23°27' (северным и южным тропиками), называется жарким или тропическим поясом. В этом поясе два раза в год Солнце в полдень проходит через самый зенит, и его лучи падают на земную поверхность отвесно. На самих тропиках Солнце проходит через зенит только один раз в год — 22 июня на северном тропике и 22 декабря — на южном тропике. Между полярными кругами и тропиками лежат умеренные пояса; в них никогда не бывает полярных дней и ночей, и Солнце никогда не проходит через зенит.

Данные геофизики, геохимии, геологии, физической географии и других наук привели к выводу о том, что земной шар в своем строении состоит из ряда концентрических оболочек, или геосфер. Геосферы одна от другой отличаются по химическому составу и агрегатному состоянию вещества, что определяется их термодинамическими условиями существования. В направлении от центра земного шара к космическому пространству выделяются следующие геосферы: литосфера, биосфера,

гидросфера, атмосфера, магнитосфера.

Атмосфера Земли образована смесью газов, влаги и частиц пыли. Сухой воздух вблизи поверхности Земли содержит 78,09% азота, 20,95% кислорода, 0,93% аргона, 0,03% углекислого газа. На долю всех остальных газов, вместе взятых, приходится 0,01%. Состав атмосферы до высоты 100 км существенно не изменяется, а выше кислород, а затем и азот находятся в атомарном состоянии.

С высотой изменяется не только сама атмосфера (давление, плотность и температура воздуха), но и электрическое состояние атмосферы, а на больших высотах еще и состав. Поэтому в атмосфере выделяют несколько сфер с различными свойствами. К ним относятся: тропосфера, стратосфера, мезосфера, термосфера (или ионосфера), экзосфера. Тропосфера простирается от поверхности Земли до высоты 8-12 км. В тропосфере находится почти весь водяной пар. Здесь формируется погода. Характерная особенность тропосферы — понижение температуры в среднем на 6 °С на каждый километр высоты. Над тропосферой находится стратосфера Ее верхняя граница расположена на высоте 50-55 км Стратосфера характеризуется возрастанием температуры с высотой. Стратосфера отличается от тропосферы малой турбулентностью воздушных масс, ничтожным содержанием водяного пара, повышенным содержанием озона. На высотах 20-25 км концентрация озона наиболее высокая, и этот тонкий слой называют озоносферой. Выше стратосферы до высот порядка 80 км находится мезосфера. В ней температура с высотой падает и у верхней границы составляет -80 °С. Между высотами 80 км и 800 км располагается термосфера. В термосфере температура растет до 2000 °С из-за влияния радиации Солнца. Учитывая способность газов термосферы ионизировать, ее называют также ионосферой. Экзосфера — самая верхняя, сильно разряженная часть атмосферы с температурой 2000 °С.

Гидросфера, или водная оболочка Земли, не является сплошной и занимает 70,8% земной поверхности. Гидросфера влияет на климат, создавая значительный парниковый эффект, сглаживает температурные контрасты различных участков земной поверхности за счет большой теплоемкости и переноса тепла из экваториальной области в умеренные и полярные широты. К гидросфере относятся Мировой океан и воды суши: реки, озера, подземные воды, ледники. Все они связаны между собой в планетарном процессе круговорота воды, газов и минеральных солей. Самое большое скопление воды на поверхности Земли составляет Мировой океан, который делится на Тихий, Атлантический, Индийский, и Северный Ледовитый. Интенсивное перемещение

90