
Термодинамические циклы.
Термодинами́ческие ци́клы — круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия), совпадают.
Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу.
Компонентами любой тепловой машины являются рабочее тело, нагреватель и холодильник (с помощью которых меняется состояние рабочего тела).
Обратимым называют цикл, который можно провести как в прямом, так и в обратном направлении в замкнутой системе. Суммарная энтропия системы при прохождении такого цикла не меняется. Единственным обратимым циклом для машины, в которой передача тепла осуществляется только между рабочим телом, нагревателем и холодильником, является Цикл Карно. Существуют также другие циклы (например, цикл Стирлинга и цикл Эрикссона), в которых обратимость достигается путём введения дополнительного теплового резервуара — регенератора. Общим (т.е. указанные циклы частный случай) для всех этих циклов с регенерацией является Цикл Рейтлингера. Можно показать (см. статью Цикл Карно), что обратимые циклы обладают наибольшей эффективностью.
Основные принципы.
Прямое преобразование тепловой энергии в работу запрещается постулатом Томсона (см. Второе начало термодинамики). Поэтому для этой цели используются термодинамические циклы.
Для
того, чтобы управлять состоянием рабочего
тела, в тепловую машину входят нагреватель
и холодильник. В каждом цикле рабочее
тело забирает некоторое количество
теплоты ()
у нагревателя и отдаёт количество
теплоты
холодильнику. Работа, совершённая
тепловой машиной в цикле, равна, таким
образом,
,
так как изменение внутренней энергии в круговом процессе равно нулю (это функция состояния).
Напомним, что работа не является функцией состояния, иначе суммарная работа за цикл также была бы равна нулю.
При
этом нагреватель потратил энергию
.
Поэтому тепловой, или, как его ещё
называют, термический или термодинамический
коэффициент полезного действия тепловой
машины (отношение полезной работы к
затраченной тепловой энергии) равен
.
Вычисление работы и кпд в термодинамическом цикле.
Работа в термодинамическом цикле, по определению, равна
,
где
— контур цикла.
C другой стороны, в соответствии с первым началом термодинамики, можно записать
.
Аналогичным образом, количество теплоты, переданное нагревателем рабочему телу, равно
.
Отсюда видно, что наиболее удобными параметрами для описания состояния рабочего тела в термодинамическом цикле служат температура и энтропия.
Цикл Карно и максимальный кпд тепловой машины.
Основная статья: Цикл Карно.
Цикл Карно в координатах T и S
Представим себе следующий цикл:
Фаза
А→Б. Рабочее тело с
температурой, равной температуре
нагревателя, приводится в контакт с
нагревателем. Нагреватель сообщает
рабочему телу
тепла в изотермическом процессе (при
постоянной температуре), при этом объём
рабочего тела увеличивается.
Фаза Б→В. Рабочее тело отсоединяется от нагревателя и продолжает расширяться адиабатически (без теплообмена с окружающей средой). При этом его температура уменьшается до температуры холодильника.
Фаза
В→Г. Рабочее тело
приводится в контакт с холодильником
и передает ему
тепла в изотермическом процессе. При
этом объём рабочего тела уменьшается.
Фаза Г→А. Рабочее тело адиабатически сжимается до исходного размера, и его температура увеличивается до температуры нагревателя.
Его КПД равен, таким образом,
,
то есть, зависит только от температур холодильника и нагревателя. Видно, что 100%-ный КПД можно получить только в том случае, если температура холодильника есть абсолютный нуль, что недостижимо.
Можно показать, что КПД тепловой машины Карно максимален в том смысле, что никакая тепловая машина с теми же температурами нагревателя и холодильника не может обладать бо́льшим КПД.
Заметим, что мощность тепловой машины Карно равна нулю, так как передача тепла в отсутствие разности температур идёт бесконечно медленно.