Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

зачет биохимия

.docx
Скачиваний:
37
Добавлен:
02.05.2015
Размер:
72.26 Кб
Скачать

Витамин PP (витамин B5 , никотиновая кислота, никотинамид, ниацин, антипеллагрический витамин)

Химическое строение и свойства: никотиновая кислота - пиридин-3-карбоновая кислота, никотинамид – ее амид никотиновой кислоты. Оба соединения в организме легко превращаются друг в друга и поэтому обладают одинаковой витаминной активностью. Витамин РР плохо растворяется в воде, но хорошо – в водных растворах щелочей.

Коферментные формы – НАД  и НАДФ. Коферменты через биомембраны не проникают.

Биохимические функции:

Почти весь имеющийся в клетках и жидких средах организма витамин РР представлен в виде никотинамида, включенного в состав коферментов – НАД и НАДФ.

1. НАД - кофермент дегидрогеназ (реакции окисления глюкозы, жирных кислот, глицерола, аминокислот,  цикла Кребса, кроме сукцинатдегидрогеназы). В этих реакциях кофермент выполняет функцию промежуточного акцептора электронов и протонов.

2. НАД – переносчик протонов и электронов в дыхательной цепи митохондрий (от окисляемого субстрата к первому комплексу цепи тканевого дыхания).

3. НАД – субстрат ДНК-лигазной реакции при синтезе и репарации ДНК, а также субстрат для синтеза поли-АДФ-рибозы в поли-(АДФ)-рибозилировании белков хроматина

4. НАДФН – донор водорода в реакциях  синтеза жирных кислот, холестерина, стероидных гормонов и некоторых других  соединений.

5. НАДФН – компонент монооксигеназной цепи микросомного окисления, выполняющей функцию  детоксикации антибиотиков и других чужеродных веществ.

6. НАД и НАДФ – аллостерические регуляторы ферментов энергетического обмена, в частности, ферментов цикла Кребса, а также реакций новообразования глюкозы (глюконеогенеза).

7. Никотинамид и его метаболиты являются участниками процесса метилирования т-РНК и белков.

Гиповитаминоз.

Характерный признак -  симптомокомплекс “трех Д” - пеллагра: дерматит, диарея, деменция. В основе заболевания лежит нарушение пролиферативной активности и энергетики клеток.

Дерматит чаще всего отмечается на открытых участках кожи, которая под действием солнечных лучей краснеет,  покрывается пигментными пятнами (в виде  крыльев бабочки) и шелушится. Язык становится ярко-красным и болезненным, утолщается, на нем появляются трещины (глоссит). Слизистые оболочки полости рта (стоматит, гингивит) и  кишечника воспаляются, затем изъязвляются. Расстройство пищеварения проявляется тошнотой, отсутствием аппетита, болями в животе, поносами.  Нарушается функция периферических нервов и центральной нервной системы. Появляется головокружение, головные боли. Апатия сменяется депрессией. Тугодумие – вплоть до умственной отсталости – тоже проявление болезни. Развиваются психозы, психоневрозы, в тяжелых случаях отмечаются галлюцинации.

Пищевые источники: печень, мясо, рис, хлеб, картофель. Витамин РР способен синтезироваться клетками организма из триптофана, но этот процесс малоэффективен – из десятков молекул триптофана образуется только одна молекула витамина.

Суточная потребность:  20–25 мг

Aнтиоксидантная система и ее функционирование в организме человека

Антиоксидантная система (АОС) противостоит повреждающему эффекту свободных радикалов (СР), непрерывно образующихся в организме человека.

1. Источники активных форм кислорода (АФК) в организме. В организме имеются ферменты, которые катализируют прямые реакции между своими субстратами и O2. Вклад таких реакций в общее потребление кислорода в организме невелик. Основная доля кислорода потребляется в митохондриальной системе, дающей энергию клеткам в виде АТФ. Эти реакции включены в различные пути биосинтеза, распада (обезвреживания), в метаболизм ароматических соединений, стероидов. К таким ферментам относятся флавопротеидные оксидазы. Окисление таких веществ, как ксантин, гипоксантин, L- и D-аминокислоты совершается коротким путем. Атомы водорода от этих соединений с помощью флавиновых коферментов переносятся непосредственно на молекулярный кислород, минуя систему цитохромов и цитохромоксидазы. Конечным продуктом окисления в этих случаях является не вода, а перекись водорода. В балансе тканевого дыхания процессы, которые заканчиваются образованием воды, составляют 93-95%, а заканчивающиеся образованием перекиси водорода — только 5-7%. Образующаяся H2O2 может разлагаться каталазой или использоваться в реакциях, катализируемых пероксидазой. Почти у половины лиц, страдающих врожденной акаталазией, не наблюдается никаких патологических симптомов. Это свидетельствует о том, что не только каталаза регулирует концентрацию H2O2 в организме, но и пероксидаза. Ферменты, участвующие в метаболизме H2O2, в значительном количестве содержатся в таких клеточных (печени, почек) органеллах, как пероксисомы. В них H2O2 образует простые самоокисляющиеся флавопротеиды — ферменты уратоксидаза, оксидаза D-аминокислот, оксидаза a-оксикислот, а каталаза (в клетках печени она составляет около 40% общего количества пероксисомного белка) разрушает ее. Перекись водорода образуется в реакциях с участием флавожелезопротеидов, медьсодержащих оксидаз, ферментов, содержащих молибден (ксантиндегидрогеназа, ксантиноксидаза, альдегидоксидаза). К дегидрогеназам, которые с помощью флавопротеидов переносят водород на молекулярный кислород с образованием H2O2, относятся моноамино-, диамино-, глицин-, гликольоксидазы. Действие ферментов группы монооксигеназ (гидроксилаз), в частности флавопротеидных, включает последовательные стадии, в которых восстановитель переводит флавин в дигидроформу, восстанавливающую O2 до H2O2, затем фермент-флавин-пероксидный комплекс гидроксилирует субстрат. К группе монооксигеназ (гидроксилаз) относят ферменты, которые названы цитохромами Р-450. Оксигенированию (в мембранах эндоплазматической сети клеток печени) подвергаются различные продукты метаболизма, чужеродные соединения. Промежуточным продуктом этих реакций является супероксидный радикал O2-.. Он образуется в процессе реакций, катализируемых диоксигеназами (чаще катализируют разрыв двойной связи в ароматическом кольце). Образование O2-. и H2O2 происходит при самопроизвольном окислении гемоглобина, ферредоксинов, восстановленных цитохромом b5 гидрохинонов, тетрагидроптеридинов, адреналина. Образование активных форм кислорода катализируют ионы железа. АФК постоянно производятся при взаимодействии O2 с ФМН или ФАД (флавиновыми коферментами), которые имеются в дегидрогеназах, оксидазах, монооксигеназах. Активной группой обоих коферментов является флавин (изоаллоксазин), имеющий сопряженную систему из трех колец, которая может при восстановлении принимать два электрона и два протона. Образуется O2-. в митохондриальной дыхательной цепи в QH2-цитохром-с-редуктазном комплексе (в дыхательной цепи имеются флавиновые коферменты), а также в нейтрофильных лейкоцитах и макрофагах, в которых активные формы кислорода используются для уничтожения фагоцитированных микроорганизмов. А. Ленинджер (1985) отмечает, что в митохондриях в цепи переноса электронов возможно неполное восстановление кислорода: в случае присоединения только двух электронов образуется перекись водорода (H2O2), одного — супероксидный радикал (O2-.). Восстановление O2 цитохром-с-оксидазой протекает без накопления АФК, так как фермент не высвобождает промежуточные продукты в среду (Я. Кольман, К.Г. Рем, 2000). В течении нормального аэробного метаболизма 1-2% всех электронов, движущихся по митохондриальной дыхательной цепи, превращаются в супероксид или трансформируются в перекись водорода (А. Boveris et al., 1972). Супероксид образуется и в других электронно-транспортных клеточных системах. Каждая клетка человеческого организма продуцирует около 1010 молекул (0,15 моля) супероксида в сутки (B.N. Ames et al., 1993) или около 1,75 кг в год. Приведенные данные свидетельствуют, что образование активных форм кислорода в клетках является нормальным физиологическим явлением, отрицают случайность этого события (так называемой утечки кислорода).

Таким образом, представленные выше сведения показывают, что образование активных форм кислорода может происходить: в процессе переноса электронов в митохондриальной дыхательной цепи; в реакциях, которые катализируются оксидазами (образуется перекись водорода), в том числе в свободнорадикальных процессах, совершающихся в фагоцитах; в реакциях микросомального окисления при обезвреживании веществ с участием цитохрома Р-450; в реакциях самопроизвольного (неферментативного) окисления веществ (гемоглобина, ферредоксинов, адреналина и др.); в биологических системах с наличием ионов металлов с переменной валентностью и, прежде всего, железа (свободных атомов, так называемых внегемовых).

Свободные радикалы могут инициировать перекисное окисление полиненасыщенных жирных кислот (ПНЖК), играющее существенную роль во многих реакциях обмена, формировании структуры клетки и, в частности, мембран. Возникающие перекиси липидов лучше растворяются в воде, чем ПНЖК, из которых они образуются, и поэтому легче вымываются из мембран, способствуя самообновлению мембранных структур. Это, по мнению И.В. Савицкого (1982), создает благоприятные условия для функционирования ферментных систем в мембранах. Перекиси липидов необходимы для биосинтеза эйкозаноидов (простагландинов, простациклинов, тромбоксанов, лейкотриенов), прогестерона. Они участвуют в гидроксилировании холестерина (в частности, при образовании кортикостероидов).

Как это было показано нами (В.К. Казимирко, В.И. Мальцев, В.Ю. Бутылин и др., 2004) интенсификация свободнорадикальных процессов, перекисного окисления ПНЖК наблюдается при развитии общего неспецифического адаптационного синдрома (стресса), т. е. практически при большинстве острых заболеваний и состояний, обострении хронических заболеваний, интоксикациях, ожогах, травмах, операциях и т. п. В основе биологической целесообразности этой интенсификации лежит усиление в возникающих экстремальных условиях синтеза эйкозаноидов, обновления мембран, детоксикационных (обезвреживающих) процессов. Накопление АФК, перекисей в значительных количествах (как это наблюдается при действии радиации, ультрафиолетового излучения, гипербарической оксигенации, интоксикациях, в том числе алкоголем) может сопровождаться целым рядом негативных изменений:

  • нарушением жидкокристаллической структуры липопротеидов мембран;

  • снижением прочности биологических мембран: разрушением мембран, набуханием и разрушением митохондрий;

  • структурно-функциональными нарушениями ферментных систем дыхания;

  • окислением сульфгидрильных групп глюкозо-6-фосфатдегидрогеназы, глицеральдегидфосфатдегидрогеназы, сукцинатдегидрогеназы и др.;

  • ослаблением биосинтеза макроэргических соединений (АТФ);

  • дезорганизацией транспортных механизмов переноса ионов (Na+, K+, Ca2+ и др.), различных метаболитов между цитозолем, митохондриями и рибосомами;

  • торможением процессов биосинтеза белков, нуклеиновых кислот, других соединений;

  • повреждением (разрывом) лизосом с выходом гидролитических ферментов;

  • разрушением мембран эритроцитов, ослаблением процессов дыхания, развитием гемолиза;

  • накоплением (в результате нарушения окислительно-восстановительных процессов) продуктов промежуточного обмена, в том числе молочной кислоты, окси-, кетокислот, и развитием ацидоза;

  • инактивацией глутатиона, липоевой кислоты и др.

2. Антиоксидантная система. Повреждающему эффекту СР, АФК противостоит система противоокислительной защиты, главным действующим звеном которой являются антиоксиданты — соединения, способные тормозить, уменьшать интенсивность свободнорадикального окисления (СРО), нейтрализовывать СР путем обмена своего атома водорода (в большинстве случаев) на кислород свободных радикалов. В выведении СР и радикальных форм антиоксидантов играют роль системы естественной детоксикации. Антиоксиданты могут быть природного (биоантиоксиданты) и синтетического происхождения. Вещества этой группы имеют подвижный атом водорода и поэтому реагируют со свободными радикалами, а также катализаторами свободнорадикального окисления и, прежде всего, с ионами металлов переменной валентности. Подвижность атома водорода обусловлена нестойкой связью с атомами углерода (С-Н) или серы (S-Н). В результате взаимодействия возникают малоактивные радикалы самого антиоксиданта (они не способны к продолжению цепи), гидроперекиси разлагаются без диссоциации на активные радикалы (под действием серосодержащих соединений), образуются комплексоны с металлами переменной валентности. По-мнению исследователей, образующиеся свободные радикалы антиоксидантов малоактивны и выводятся из организма в виде молекулярных соединений — продуктов взаимодействия с другими антиоксидантами (токоферолами, хинонами, витаминами группы К, серосодержащими соединениями). Ряд антиоксидантов не обрывает, а замедляет продолжение цепи, т. е. обладает пролонгирующим действием. Несмотря на малую активность радикалов антиоксидантов, их накопление в клетках нежелательно. Антиоксиданты могут обезвреживать свободные радикалы еще до развития эффекта повреждения биомолекул. Антиоксидантная защита направлена против всех видов радикалов, образующихся в организме. Жирорастворимые биоантиоксиданты (фосфолипиды, токоферолы, витамин А, каротиноиды, убихинон, витамины группы К, стероидные гормоны) осуществляют свою защитную функцию в биологических мембранах, водорастворимые (аскорбиновая кислота, лимонная, никотиновая, серосодержащие соединения — цистеин, гомоцистеин, липоевая кислота, бензойная, церулоплазмин, фенольные соединения — полифенолы, флавоноиды, трансферрин, лактоферрин, альбумин, мочевина, мочевая кислота) — в цитозоле клеток, межклеточной жидкости, плазме крови, лимфе. Защита от повреждающего действия АФК, СР осуществляется на всех уровнях организации: от клеточных мембран до организма в целом.

2.1. Ферменты. Угроза для клеток со стороны активных радикалов устраняется действием ряда ферментов, эффективно обезвреживающих эти соединения. Первую линию защиты от свободных радикалов составляют антиоксидантные ферменты супероксиддисмутаза, каталаза, пероксидаза. Супероксиддисмутазы (металлоферменты) катализируют реакцию:

O2-. + O2—. ––––> H2O2 + O2

Они находятся во всех клетках, потребляющих кислород. Скорость реакции чрезвычайно высока и лимитируется только скоростью диффузии O2-.. Каталитический цикл этих ферментов включает восстановление и окисление иона металла на активном центре фермента. В организме имеется три формы СОД, содержащие медь, цинк (одна находится в цитозоле, другая экстрацеллюлярная — в эндотелии) и магний (находится в матриксе митохондрий) (B. Halliwel, J.M.C. Gutteridge, 1985). Супероксиддисмутаза осуществляет инактивацию радикалов кислорода, которые могут возникнуть в ходе биологических реакций переноса электронов или при воздействии металлов с переменной валентностью, ионизирующего, ультрафиолетового излучения, ультразвука, гипербарической оксигенации, различных заболеваниях.

Почти во всех животных клетках и органах определяется каталазная активность. Особенно богаты каталазой клетки печени, почек, эритроциты. Она предотвращает накопление в клетке перекиси водорода, образуемой при аэробном окислении восстановленных флавопротеидов и из O2-..

H2O2 + H2O2 ––––> O2 + 2H2О каталаза

Каталаза может разложить 44 000 молекул H2O2 в секунду (относится к числу ферментов с наиболее высоким числом оборотов). Для расщепления большого количества перекиси водорода требуется малое количество фермента. Как и в случае супероксиддисмутазы, скорость реакции определяется диффузией и не требует энергии для активации. Каталаза преимущественно находится в пероксисомах (B. Halliwel, J.M.C. Gutteridge, 1989; R. Stocker, B. Frei, 1991), внеклеточно каталаза находится в незначительных концентрациях. Наибольшая активность каталазы в организме характерна для печени. К алиментарным факторам, понижающим каталазную активность, относят недостаточность витаминов группы В, фолиевой кислоты, биотина, пантотеновой кислоты, рибофлавина, витамина А. Снижение активности каталазы наблюдается при избытке метионина, тирозина, цистина, меди, цинка. В эритроцитах при высокой скорости образования перекиси водорода (1010-109 моль H2O2 на 1 мг гемоглобина в 1 мин) преобладает активность глутатионпероксидазы, а при низкой скорости образования H2O2 (109-107) — защитное действие оказывает в основном каталаза.

В печени, почках, нейтрофильных лейкоцитах обнаруживается пероксидазная активность.

H2O2 + H2O2 ––––> 2H2О + RO2 пероксидаза

Миелопероксидаза в нейтрофилах окисляет ионы галогенов до свободного галогена, являющегося эффективным бактерицидным агентом. В эритроцитах, печени, хрусталике глаза имеется глутатионпероксидаза, которая содержит селен и специфично окисляет восстановленный глутатион. Как каталаза, так и пероксидаза могут утилизировать как субстраты органические гидроперекиси (например, гидроперекись этила, надуксусную кислоту). Полагают, что в животных тканях каталаза действует, как пероксидаза.

В пептидной цепи глутатионпероксидазы имеется остаток селеноцистеина — аналога цистеина, в котором атом серы замещен атомом селена. Селеноцистеин входит в активный центр фермента. Глутатиопероксидаза может восстанавливать гидроперекиси свободных жирных кислот, гидроперекиси фосфолипидов, эстерифицированных жирных кислот (B. Halliwel, J.M.C. Gutteridge, 1984). Глутатионпероксидаза, окисляющаяся до GSSG, восстанавливается НАДФН-зависимым ферментом глутатионредуктазой. Антиоксидантные ферменты играют важную защитную роль и во внеклеточных пространствах, где они содержатся в незначительных концентрациях (B. Frei et al., 1988; R. Stocker, B. Frei, 1991).

Во всех животных тканях содержится глутатион (гамма-глутамилцистеининглицин) — самое распространенное сульфгидрильное соединение в клетках. Глутатион содержит нетипичную гамма-связь между Glu и Cys. Восстановителем является тиольная группа цистеинового остатка. Функцией фермента является поддержание активного состояния многих ферментов, самопроизвольное окисление которых приводит к образованию дисульфидной группы: глутатион восстанавливает сульфгидрильные формы. Окисленный глутатион восстанавливается флавопротеидом глутатионредуктазой, которая утилизирует Н+ из НАДФ.Н+Н. Две молекулы восстановленной формы (GSH) при окислении образуют дисульфид (GSSG).

НАДФ + Н++GSSG ––––> НАДФ+ + 2GSH.

Восстановленный глутатион — главный антиоксидант эритроцитов, он служит коферментом при восстановлении метгемоглобина в функционально активный гемоглобин. С помощью восстановленного глутатиона осуществляется детоксикация H2O2 и гидроперекисей, которые образуются при реакции активных радикалов кислорода с ненасыщенными жирными кислотами мембраны эритроцитов. Вторым важным защитным ферментом в эритроцитах является селеносодержащая глутатионпероксидаза. В гексозомонофосфатном шунте (пентозном цикле) образуется НАДФ.Н+Н, который поставляет Н+ для регенерации восстановленного глутатиона (GSH) из глутатион-дисульфида (GSSG) с помощью глутатионредуктазы. Восстановленный глутатион содержится в клетках (в милимолярных концентрациях), плазме, других средах (в следовых количествах). В значительных количествах он имеется в нижних дыхательных путях, где нейтрализует поступающие из атмосферы озон, NO.

Селен представляет собой компонент глутатионпероксидазы и является выраженным синергистом витаминов антиоксидантной группы. Этот микроэлемент — важная составная часть сбалансированного питания (в почвах Украины имеется его дефицит). Необходимые суточные добавки к пище селена составляют около 70 мкг для мужчин и 50 — для женщин (0,87 мкг/кг). В крови часть селена связывается с белками, концентрация его в тканях органов значительно различается. Об уровне селена в организме можно судить по активности глутатионпероксидазы, особенно это касается лиц с низким потреблением селена. Из организма селен удаляется в основном путем экскреции с мочой. Токсичность селена весьма низкая: клинические проявления наблюдаются при длительном приеме 1 мг/сут и более. Молекулярные механизмы развития токсичности неизвестны. От содержания селена в организме зависит функционирование цитохрома Р-450 в эндоплазматической сети клеток печени, а также транспорт электронов в митохондриях. Дефицит его в организме сопровождается развитием алиментарной мышечной дистрофии, эндемической селенодефицитной кардиомиопатии. Сниженное содержание этого микроэлемента обнаруживают у больных инфарктом миокарда, миокардиодистрофиями, дилатационной кардиомиопатией. Применение селена положительно влияет на процессы регенерации в сердечной мышце после перенесенного инфаркта миокарда. Он стимулирует иммуногенез и, в частности, продукцию антител, участвует как антиоксидант в окислительно-восстановительных процессах, дыхании клетки, синтезе специфических белков. Дефицит его у животных сопровождается фиброзом, дистрофическими процессами в поджелудочной железе, некрозами в печени, эозинофильным энтеритом, который протекает на фоне недостаточности витамина Е. У животных наблюдается задержка роста, развития, нарушается репродуктивная функция. Имеется отрицательная обратная корреляция между потреблением селена, его уровнем и смертностью от злокачественных заболеваний легких, молочной железы, кишечника, яичников. Он оказывает и непосредственное повреждающее действие на злокачественные клетки. Кроме антиканцерогенного действия селен имеет и антимутагенный эффект, противодействует токсическому влиянию тяжелых металлов (возможно за счет образования нерастворимых комплексов, восстановления дисульфидных связей в белках в SH-группы). Важнейшей ролью селена является его вхождение в состав глутатионпероксидазы — фермента предохраняющего клетки от токсического действия перекисных радикалов. Имеется связь между селеном и витамином Е — они влияют на разные этапы образования органических перекисей: токоферолы подавляют (предупреждают) перекисное окисление полиненасыщенных жирных кислот, а содержащая селен глутатионпероксидаза разрушает уже образовавшиеся перекиси липидов, перекись водорода. Глутатионпероксидаза, не содержащая селен, — глутатион-S-трансфераза — разрушает только перекись водорода (как и каталаза). При достаточном поступлении в организм витамина Е проявления дефицита селена значительно нивелируются. Наибольшее количество селена содержится в белках с высоким содержанием цистина: образуются трисульфиды, которые подобно сульфгидрильным группам мембранных белков, регулируют стабильность и проницаемость мембран. При дефиците селена и снижении активности глутатионпероксидазы повышается гемолиз эритроцитов вследствие действия перекиси водорода и липоперекисей. На активность глутатионпероксидазы влияет уровень содержания витаминов С и А, которые способствуют усвоению селена, его транспорту и утилизации. Селен также принимает участие в фотохимических реакциях, связанных с функцией зрения. Витамин Е предупреждает окисление селена, способствует его сохранению. Добавка селена при Е-дефицитном рационе тормозит накопление липоперекисей, ликвидирует или предупреждает симптомы Е-витаминной недостаточности. Восстановленный глутатион и глутатионпероксидаза превращают липоперекиси в менее токсичные оксикислоты и этим предупреждают повреждение биоструктур. Пополнение фонда глутатиона происходит за счет аминокислот, которые содержат серу.

Существуют ферменты, обезвреживающие поврежденные свободными радикалами протеины, окисленные жирные кислоты, а также ДНК.

Таким образом, ингибирование радикалов осуществляется системой антиоксидантов. Начальную стадию аутоокисления в мембранах угнетают токоферол, полифенолы, супероксиддисмутаза. Радикалы токоферола, полифенолов регенерируются под влиянием аскорбиновой кислоты, находящейся в гидрофильном слое мембран. Окисленные формы аскорбиновой кислоты восстанавливаются глутатионом (или эрготионеином), которые в свою очередь получают атомы водорода от НАДФ.H2. В ингибировании участвуют ферменты, катализирующие окислительно-восстановительные превращения глутатиона и аскорбиновой кислоты — глутатионзависимая редуктаза и дегидрогеназа, а также каталаза и пероксидаза. В плазме крови активно действует церулоплазмин. Представленная система поддерживает свободнорадикальное окисление липидов в мембранах на чрезвычайно низком уровне. А. Ленинджер (1981) считает, что аутоокисление липидов в организме полностью ингибируется витамином Е, аскорбиновой кислотой, различными ферментами. Функционирование цепи биоантиоксидантов и системы ферментов зависит от фонда атомов водорода (НАДФ.H2). В свою очередь этот фонд пополняется за счет дегидрирования энергетических субстратов, т. е. при ферментативном окислении. Эти факты свидетельствуют о наличии сопряженности между ферментативным окислением (окислительным фосфорилированием) и свободнорадикальным окислением, что мы наблюдали у больных при возникновении различных заболеваний и состояний: одновременно повышаются как показатели активности окислительно-восстановительных ферментов (дегидрогеназ, цитохромоксидазы), так и показатели содержания промежуточных продуктов переокисления липидов (диеновых конъюгатов, малонового диальдегида и др.). В разных тканях преобладают определенные компоненты АОС (В.Н. Бобырев и соавт., 1994). В клетках железистого эпителия, эритроцитах основным источником водорода для системы антиоксидантов является НАДФ.H2. Во внеклеточных структурах (где нет фонда НАДФ.H2) важное значение имеют восстановленные формы глутатиона, аскорбата. В волокнах основного вещества сосудистой стенки, плазме крови ингибирование свободнорадикального окисления осуществляют токоферолы, аскорбат, биофлавоноиды (хронический дефицит в организме эрготионеина, аскорбата, токоферола, биофлавоноидов приводит к повреждению сосудистой стенки). В плазме крови свободные радикалы нейтрализует церулоплазмин. В хрусталике глаза наблюдается высокая активность СОД, глутатионпероксидазы, глутатионредуктазы. Особенности функционирования антиоксидантной системы в различных органах и тканях определяются генотипом, а также зависят от поступления в организм индукторов СРО, обеспеченности биоантиоксидантами и в первую очередь a-токоферолом, аскорбиновой кислотой, b-каротином, селеном. Длительная, а также часто повторяющаяся, интенсификация свободнорадикального окисления приводит к истощению антиоксидантной системы (дефициту витаминов Е, С, b-каротина, глутатиона, селена, снижению активности СОД, каталазы, глутатионпероксидазы и др.). Так как свободнорадикальные процессы совершаются не только в клеточных мембранах, но и в цитозоле, внеклеточном окружении, эффективная антиоксидантная защита возможна при одновременном (сочетанном) приеме жиро- и водорастворимых антиоксидантов в виде комплексов. Антиоксидантные комплексы восстанавливают (пополняют) пул основных антиоксидантных веществ в организме, которые интенсивно расходуются при патологических состояниях.