Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Вопросы - Ответы Сети

.pdf
Скачиваний:
41
Добавлен:
01.05.2015
Размер:
2.07 Mб
Скачать

партнеров репликации. Это увеличивает скорость репликации и снижает затраты на открытие и завершение соединений.

Управление "захороненными" записями. "Захороненными" (tombstoning) называются записи в базе данных WINS, которые были помечены для удаления. Информация о "захороненных" записях реплицируется между WINS-серверами, что позволяет синхронно удалить эти записи из всех копий базы данных WINS. Реализованный механизм управления позволяет администратору вручную удалять произвольные записи из базы данных WINS.

Улучшенная утилита управления. Для управления WINS-сервером используется специальная утилита WINS, реализованная в виде оснастки ММС.

Расширенная фильтрация и поиск записей. Улучшенная фильтрация и новые поисковые функции помогают находить записи, показывая только записи, соответствующие заданным критериям. Эти функции особенно полезны для анализа очень больших баз данных WINS.

Динамическое стирание записей и множественный выбор. Эти особенности упрощают управление базой данных WINS. При помощи оснастки WINS можно легко манипулировать с одной (или более) записью WINS динамического или статического типа.

Проверка записей и проверка правильности номера версии. Указанный механизм осуществляет проверку последовательности имен, размещенных в базах данных WINS-серверов. Проверка записей сравнивает IP-адреса, возвращаемые по запросу NetBIOS-имени с различных серверов WINS. Механизм проверки правильности номера версии проверяет номер владельца таблицы отображения "адрес-версия".

Возможность экспорта базы данных WINS. При экспорте содержимое базы данных WINS-сервера сохраняется в текстовом файле с запятыми в качестве разделителей. Можно импортировать этот файл в различных форматах (в том числе и в формате Microsoft Excel).

Динамическое обновление клиентов. Для возобновления регистрации локальных NetBIOS-имен не требуется перезапускать WINS-клиента. Обновление информации о зарегистрированных именах администратор может использовать утилиту Nbtstat.exe с параметром -гг.

Консольный доступ только для чтения к оснастке WINS. Эта возможность предоставляется группе WINS Users (Пользователи WINS), которая автоматически создается в момент установки WINS-сервера. Добавляя членов к этой группе, можно предоставить доступ только для чтения к информации о WINS. Это позволяет пользователю, являющемуся членом указанной группы, просматривать (но не изменять!) параметры и содержимое базы данных WINS-сервера.

8. Сети ISDN. Сети Х.25. Сети FrameRelay.

ISDN (произносится «ай-эс-ди-эн́», англ. Integrated Services Digital Network) — цифровая сеть с интеграцией обслуживания. Позволяет совместить услуги телефонной связи и обмена данными.

Назначение

Основное назначение ISDN — передача данных со скоростью до 64 кбит/с по 4- килогерцовой проводной линии и обеспечение интегрированных телекоммуникационных услуг (телефон, факс, и пр.). Использование для этой цели телефонных проводов имеет два преимущества: они уже существуют и могут использоваться для подачи питания на терминальное оборудование.

Выбор 64 кбит/c стандарта определяется следующими соображениями. При полосе частот 4 кГц, согласно теореме Котельникова, частота дискретизации должна быть не ниже 8 кГц. Минимальное число двоичных разрядов для представления результатов стробирования голосового сигнала при условии логарифмического преобразования равна 8. Таким образом, в результате перемножения этих чисел

(8 кГц * 8 (число двоичных разрядов) = 64) и получается значение полосы B-канала ISDN, равное 64 кГц. Базовая конфигурация каналов имеет вид 2 × B + D = 2 × 64 + 16 =

144 кбит/с. Помимо B-каналов и вспомогательного D-канала ISDN может предложить и другие каналы с большей пропускной способностью: канал Н10 с полосой 384 кбит/с, Н11 — 1536 и Н12 — 1920 кбит/c (реальные скорости цифрового потока). Для первичных каналов (1544 и 2048 кбит/с) полоса D-канала может составлять 64 кбит/с.

Принцип работы

Для объединения в сети ISDN различных видов трафика используется технология TDM (англ. Time Division Multiplexing, мультиплексирование по времени). Для каждого типа данных выделяется отдельная полоса, называющаяся элементарным каналом (или стандартным каналом). Для этой полосы гарантируется фиксированная, согласованная доля полосы пропускания. Выделение полосы происходит после подачи сигнала CALL по отдельному каналу, называющемуся каналом внеканальной сигнализации.

В стандартах ISDN определяются базовые типы каналов, из которых формируются различные пользовательские интерфейсы.

Архитектура сети ISDN

Сеть ISDN состоит из следующих компонентов:

сетевые терминальные устройства (NT, англ. Network Terminal Devices)

линейные терминальные устройства (LT, англ. Line Terminal Equipment)

терминальные адаптеры (TA, англ. Terminal adapters)

Абонентские терминалы

Абонентские терминалы обеспечивают пользователям доступ к услугам сети. Существует два вида терминалов: TE1 (специализированные ISDN-терминалы), TE2 (неспециализированные терминалы). TE1 обеспечивает прямое подключение к сети ISDN, TE2 требуют использования терминальных адаптеров (TA).

Сети X.25

Сети Х.25 являются первой сетью с коммутацией пакетов и на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Сетевой протокол X.25 предназначен для передачи данных между компьютерами по телефонным сетям. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий) и обеспечивают передачу данных со скоростью до 64 Кбит/с. Х.25 хорошо работает на линиях связи низкого качества благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровнях.

Стандарт Х.25 определяет интерфейс "пользователь - сеть" в сетях передачи данных общего пользования или “интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования”. Другими словами Х.25 определяет двухточечный интерфейс (выделенную линию) между пакетным терминальным оборудованием DTE и оконечным оборудованием передачи данных DCE.

На рисунке представлена структурная схема сети X.25, где изображены основные элементы:

DTE (data terminal equipment) – аппаратура передачи данных (кассовые аппараты, банкоматов, терминалы бронирования билетов, ПК, т.е. конечное оборудование пользователей).

DCE (data circuit-terminating equipment) – оконечное оборудование канала передачи данных

(телекоммуникационное оборудование, обеспечивающее доступ к сети).

PSE (packet switching exchange) – коммутаторы пакетов.

Интерфейс Х.25 обеспечивает:

1)доступ удаленному пользователю к главному компьютеру;

2)доступ удаленному ПК к локальной сети;

3)связь удаленной сети с другой удаленной сетью.

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой. Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого

виртуального канала выполняется служебными протоколами, выполняющими роль протокола сигнализации.

Физический уровень

На физическом уровне Х.25 используются аналоговые выделенные линии, которые обеспечивают двухточечное соединение. Могут использоваться аналоговые телефонные линии, а также цифровые выделенные линии. На сетевом уровне нет контроля достоверности и управления потоком. На физическом уровне Х.25 реализуется один из протоколов X.21 или X.21bis.

Канальный уровень

На канальном уровне сеть Х.25 обеспечивает гарантированную доставку, целостность данных и контроль потока. На канальном уровне поток данных структурируется на кадры. Контроль ошибок производится во всех узлах сети. При обнаружении ошибки выполняется повторная передача данных. Канальный уровень реализуется протоколом LAP-B, который работает только с двухточечными каналами связи, поэтому адресация не требуется.

Сетевой уровень

Сетевой уровень Х.25 реализуется протоколом PLP (Packet-Layer Protocol - протокол уровня пакета). На сетевом уровне кадры объединяются в один поток, а общий поток разбивается на пакеты. Протокол PLP управляет обменом пакетов через виртуальные цепи. Сеанс связи устанавливается между двумя устройствами DTE по запросу от одного из них. После установления коммутируемой виртуальной цепи эти устройства могут вести полнодуплексный обмен информации. Сеанс может быть завершен по инициативе любого DTE, после чего для последующего обмена снова потребуется установление соединения.

Протокол PLP определяет следующие режимы:

Установление соединения используется для организации коммутируемой виртуальной цепи между DTE. Соединение устанавливается следующим образом. DTE вызывающей стороны посылает запрос своему локальному устройству DCE, которое включает в запрос адрес вызывающей стороны и неиспользованный адрес логического канала для использования его соединением. DCE определяет PSE, который может быть использован для данной передачи. Пакет, передаваемый по цепочке PSE, достигает конечного удаленного DCE, где определяется DTE узла назначения, к которому пакет и доставляется. Вызывающий DTE дает ответ своему DCE, а тот передает ответ удаленному DCE для удаленного DTE. Таким образом, создается коммутируемый виртуальный канал.

Режим передачи данных, который используется при обмене данными через виртуальные цепи. В этом режиме выполняется контроль ошибок и управление потоком.

Режим ожидания используется, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит.

Сброс соединения используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

Достоинства сети Х.25:

высокая надежность, сеть с гарантированной доставкой информации;

могут быть использованы как аналоговые, так и цифровые каналы передачи данных (выделенные и коммутируемые линии связи).

Недостатки сети:

значительные задержки передачи пакетов, поэтому ее невозможно использовать для передачи голоса и видеоинформации.

Сети Frame Relay (FR)

Сеть Frame Relay является сетью с коммутацией кадров или сетью с ретрансляцией кадров, ориентированной на использование цифровых линий связи. Первоначально технология Frame Relay была стандартизирована как служба в сетях ISDN со скоростью передачи данных до 2 Мбит/с. В дальнейшем эта технология получила самостоятельное развитие. Frame Relay поддерживает физический и канальный уровни OSI. Технология Frame Relay использует для передачи данных технику виртуальных соединений (коммутируемых и постоянных).

Стек протоколов Frame Relay передает кадры при установленном виртуальном соединении по протоколам физического и канального уровней. В Frame Relay функции сетевого уровня перемещены на канальный уровень, поэтому необходимость в сетевом уровне отпала. На канальном уровне в Frame Relay выполняется мультиплексирование потока данных в кадры.

Каждый кадр канального уровня содержит заголовок, содержащий номер логического соединения, который используется для маршрутизации и коммутации трафика. Frame Relay - осуществляет мультиплексирование в одном канале связи нескольких потоков данных. Кадры при передаче через коммутатор не подвергаются преобразованиям, поэтому сеть получила название ретрансляции кадров. Таким образом, сеть коммутирует кадры, а не пакеты. Скорость передачи данных до 44 Мбит/с, но без гарантии целостности данных и достоверности их доставки.

Frame Relay ориентирована на цифровые каналы передачи данных хорошего качества, поэтому в ней отсутствует проверка выполнения соединения между узлами и контроль достоверности данных на канальном уровне. Кадры передаются без преобразования и контроля как в коммутаторах локальных сетей. За счет этого сети Frame Relay обладают высокой производительностью. При обнаружениях ошибок в кадрах повторная передача кадров не выполняется, а искаженные кадры отбраковываются. Контроль достоверности данных осуществляется на более высоких уровнях модели OSI.

Сети Frame Relay широко используется в корпоративных и территориальных сетях в качестве:

1)каналов для обмена данными между удаленными локальными сетями (в корпоративных сетях);

2)каналов для обмена данными между локальными и территориальными (глобальными)

сетями.

Технология Frame Relay (FR) в основном используется для маршрутизации протоколов локальных сетей через общие (публичные) коммуникационные сети. Frame Relay обеспечивает передачу данных с коммутацией пакетов через интерфейс между оконечными устройствами пользователя DTE (маршрутизаторами, мостами, ПК) и оконечным оборудованием канала передачи данных DCE (коммутаторами сети типа "облако").

Коммутаторы Frame Relay используют технологию сквозной коммутации, т.е. кадры передаются с

коммутатора на коммутатор сразу после прочтения адреса назначения, что обеспечивает высокую скорость передачи данных. В сетях Frame Relay применяются высококачественные каналы передачи, поэтому возможна передача трафика чувствительного к задержкам (голосовых и мультимедийных данных). В магистральных каналах сети Frame Relay используются волоконнооптические кабели, а в каналах доступа может применяться высококачественная витая пара.

На рисунке представлена структурная схема сети Frame Relay, где изображены основные элементы:

DTE (data terminal equipment) – аппаратура передачи данных (маршрутизаторы, мосты, ПК).

DCE (data circuit-terminating equipment) – оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети).

Физический уровень Frame Relay

На физическом уровне Frame Relay используют цифровые выделенные каналы связи, протокол физического уровня I.430/431.

Канальный уровень Frame Relay

Всети Frame Relay используется два типа виртуальных каналов постоянные (PVC) и коммутируемые виртуальные каналы. На канальном уровне поток данных структурируется на кадры, поле данных в кадре имеет переменную величину, но не более 4096 байт. Канальный уровень реализуется протоколом LAP-F. Протокол LAP-F имеет два режима работы: основной и управляющий. В основном режиме кадры передаются без преобразования и контроля.

Вполе заголовка кадра имеется информация, которая используется для управления виртуальным соединением в процессе передачи данных. Виртуальному соединению присваивается определенный номер (DLCI). DLCI (Data Link Connection Identifier) - идентификатор соединения канала данных.

Каждый кадр канального уровня содержит номер логического соединения, который используется для маршрутизации и коммутации трафика. При этом контроль правильности передачи данных от отправителя получателю осуществляется на более высоком уровне модели OSI.

Коммутируемые виртуальные каналы используются для передачи импульсного трафика между двумя устройствами DTE. Постоянные виртуальные каналы применяются для постоянного обмена

сообщениями между двумя устройствами DTE.

Процесс передачи данных через коммутируемые виртуальные каналы осуществляется следующим образом:

установление вызова - образуется коммутируемый логический канал между двумя DTE;

передача данных по установленному логическому каналу;

режим ожидания, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит;

завершение вызова - используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

Процесс передачи данных через предварительно установленные постоянные виртуальные каналы осуществляется следующим образом:

передача данных по установленному логическому каналу;

режим ожидания, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит.

Достоинства сети Frame Relay:

высокая надежность работы сети;

обеспечивает передачу чувствительный к временным задержкам трафик (голос, видеоизображение).

Недостатки сети Frame Relay:

высокая стоимость качественных каналов связи;

не обеспечивается достоверность доставки кадров.