- •Студентка: Қабылбавева с.П.
- •Группа: зус ээ 14-1
- •Проверил: Хусаинов б.Н.
- •Алматы 2015
- •Лекции по тоэ/ №1 Определение переходных процессов.
- •Лекции по тоэ/ №2 Законы (правила) коммутации.
- •Лекции по тоэ/ №3 Начальные условия переходного процесса.
- •Лекции по тоэ/ №4 Классический метод расчета переходных процессов.
- •Лекции по тоэ/ №5 Определение установившейся составляющей xy(t).
- •Лекции по тоэ/ №6 Методы составления характеристического уравнения.
- •Лекции по тоэ/ №7 Определение постоянных интегрирования.
- •Лекции по тоэ/ №8 Алгоритм расчета переходных процессов классическим методом.
- •Лекции по тоэ/ №9 Операторный метод расчета переходных процессов.
- •Лекции по тоэ/ №10 Операторные изображения некоторых функций времени.
- •Лекции по тоэ/ №11 Законы электротехники в операторной форме.
- •Лекции по тоэ/ №12 Способы составления системы операторных уравнений.
- •Лекции по тоэ/ №13 Переход от изображения функции f(p) к ее оригиналу f(t). Формула разложения.
- •Лекции по тоэ/ №14 Алгоритм расчета переходных процессов операторным методом.
- •Лекции по тоэ/ №15 Анализ переходных процессов в цепи r, l.
- •Лекции по тоэ/ №16 Анализ переходных процессов в цепи r, c.
- •Лекции по тоэ/ №17 Анализ переходных процессов в цепи r, l, c.
- •Лекции по тоэ/ №18 Переходные функции по току и напряжению.
- •Лекции по тоэ/ №19 Расчет переходных процессов методом интеграла Дюамеля.
- •Лекции по тоэ/ №20 Расчет переходных процессов методом численного интегрирования дифференциальных уравнений на эвм.
- •Лекции по тоэ/ №21 Расчет переходных процессов методом переменных состояния.
Лекции по тоэ/ №21 Расчет переходных процессов методом переменных состояния.
![]()
Уравнениями состояния электрической цепи называют любую систему дифференциальных уравнений, которая описывает состояние (режим) данной цепи. Например, система уравнений Кирхгофа является уравнениями состояния цепи, для которой она составлена.
В более узком смысле в математике уравнениями состояния называют систему дифференциальных уравнений 1-го порядка, разрешенных относительно производных (форма Коши). Система уравнений состояния в обобщенной форме имеет вид:

Та же система уравнений в матричной форме:

или в обобщённой матричной форме:
![]()
Система уравнений состояния формы Коши решается методом численного интегрирования (метод Эйлера или метод Рунге-Кутта) на ЭВМ по стандартной программе, которая должна быть в пакете стандартных программ. При отсутствии такой программы в пакете она легко может быть составлена по следующему алгоритму (метод Эйлера) для к-го шага:
tk=k·h
Значения производных на к-ом шаге:

Значения переменных на к-ом шаге:

Для определения значений переменных и их производных на 1-м шаге ин¬тегрирова¬ния используются их значения на момент t=0, т.е. их начальные условия x1(0), x2(0)...xn(0).
Уравнения состояния формы Коши для заданной схемы могут быть получены из системы уравнений Кирхгофа путем их преобразования. Для этой цели: а) из системы уравнений Кирхгофа методом подстановки исключаются ''лишние'' переменные, имеющие зависимые начальные условия, и оставляют переменные iL(t) и uC(t), которые не изменяются скачком и имеют независи-мые начальные условия iL(0) и uC(0); б) оставшиеся уравнения решаются относительно производных и приводятся их к форме Коши.
В случае сложных схем уравнения состояния формы Коши могут быть составлены топологическими методами с использованием матриц соединений [A] и [B].
Последовательность расчета переходного процесса методом переменных состояния выглядит так:
1. Производится расчет схемы в установившемся режиме до коммутации и определяются независимые начальные условия iL(0) и uC(0).
2. Составляется система дифференциальных уравнений по законам Кирхгофа для схемы после коммутации.
3. Методом исключения ''лишних'' переменных система уравнений Кирхгофа преобразуется в систему уравнений Коши, составляются матрицы коэффициентов.
4. Выбирается расчетное время (продолжительность переходного процесса) и число шагов интегрирования N.
5. Решение задачи выполняется на ЭВМ по стандартной программе. Выходную функцию получают в виде графической диаграммы x=f(t)или в виде таблицы координат функций для заданных моментов времени.
Пример. Для схемы рис. 74.1 с заданными параметрами элементов (e(t)=Emsin(ωt+ψE), R, R1, R2, R3, L1, L2, C) выполнить расчет переходного процесса и определить функцию uab(t).

1. Выполняется расчет схемы в установившемся режиме переменного тока до коммутации и определяются начальные условия i1(0), i2(0), uC(0).
2. Составляется система дифференциальных уравнений по законам Кирхгофа:

3. Система уравнений Кирхгофа преобразуется в систему уравнений Коши.

Составляем матрицы коэффициентов:

