
- •Б. В. Селюк
- •Введение
- •I. Предпосылки создания квантовой механики
- •§1. Классическая электронная теория
- •§2. Равновесное излучение. Гипотеза Планка
- •§3. Корпускулярные свойства света. Теория атома по Бору
- •§4. Волновые свойства частиц. Корпускулярно-волновой дуализм
- •II. Описание состояний микрообъектов
- •§5. Состояния микрочастиц
- •§6. Свойства амплитуд состояний
- •§7. Векторы состояний
- •III. Операторы и наблюдаемые
- •§8. Операторы
- •§9. Наблюдаемые
- •§10. Матричное и координатное представления
- •§11. Операторы координат, импульсов и их функций
- •§12. Операторы момента импульса
- •§13. Спин
- •IV. Эволюция состояний
- •§14. Уравнение Шредингера. Стационарные состояния
- •§15. Уравнение движения в форме Гейзенберга. Интегралы движения
- •§16. Переход от квантовых уравнений движения к классическим
- •§17. Квазистационарные состояния. Соотношения неопределенностей для энергии и времени
- •V. Простешие случаи движения §18. Свободное движение микрочастиц
- •§19. Движение частиц в прямоугольной потенциальной яме
- •§20. Прохождение частицы через потенциальный барьер. Туннельный эффект
- •§21. Линейный гармонический осциллятор
- •VI. Движение в центральном поле §22. Ротатор. Собственные функции и собственные значения операторов орбитального момента импульса
- •§23. Задача о движении двух частиц.
- •§24. Решение квантово-механической задачи об атоме водорода
- •§25. Энергетический спектр и пространственная структура атома водорода. Влияние спина электрона на энергетический спектр
- •VII. Теория возмущений. Атомы и молекулы §26. Теория стационарных возмущений
- •§27. Теория нестационарных возмущений
- •§28. Принцип неразличимости одинаковых частиц
- •§29. Атом гелия
- •§30. Периодическая система элементов д.И. Менделеева
- •§31. Молекула водорода
- •§32. Природа химических связей
- •Заключение
- •Литература
- •Оглавление
§25. Энергетический спектр и пространственная структура атома водорода. Влияние спина электрона на энергетический спектр
Рис.
25.1
Энергетический спектр атома водорода определяется формулой (24.10), совпадающей с той, которая получается в боровской теории. В отличие от последней ограничение n 1 не является дополнительным постулируемым условием, а непосредственно следует из (24.11). Уровни энергии атомов принято изображать схемой, показанной на рисунке 25.1. Стрелки обозначают переходы, соответствующие спектральной серии Лаймана.
Энергетические уровни атома водорода вырождены не только по магнитному, но и по орбитальному квантовому числу l. Вырождение по l называют случайным, поскольку число l содержится в исходном уравнении (23.10). Вырождение получается только в том случае, когда потенциальная функция имеет вид (24.1). В атомах щелочных металлов валентный электрон находится в поле, несколько отличающемся от кулоновского (24.1). Это приводит к снятию вырождения: уровни ns, np, nd, … на схеме, аналогичной рис.25.1, располагаются не на одной высоте.
Под пространственной
структурой атома
понимают распределение плотности
вероятности |()|2
нахождения электрона в различных точках
пространства. Точно так же распределена
плотность отрицательного электрического
заряда атома. Величина |(
)|2
определяет вероятность dW обнаружить
электрон в элементарном объеме d3
вблизи точки с радиус-вектором
:
dW = |()|2
d3
. (25.1)
Чтобы представить себе пространственное распределение плотности вероятности, нужно из-за (23.9) совместить в своем воображении угловое распределение, отражаемое рассмотренными в §22 полярными диаграммами, с распределением |R(r)|2, определяемым функцией (24.12).
Рис.
25.2
Иногда рассматривают вероятность dW(r) обнаружить электрон в тонком сферическом слое толщиной dr на расстоянии r от центра:
dW(r) = r2 |R|2 dr . (25.2)
Эта величина определяется радиальной плотностью вероятности r2 |R|2. График радиальной плотности вероятности для 1s состояния изображен пунктирной линией на рисунке 25.2. Он имеет максимум при r = r0. Однако это не означает, что движение электрона по боровской орбите хотя бы приблизительно отражает пространственную структуру: электрон может оказаться в любой точке вблизи ядра, а боровский электрон – лишь в точках, лежащих на орбите.
Из простых качественных соображений ясно, что учет спина электрона должен изменить формулу (24.10), описывающую энергетический спектр. Энергия взаимодействия спинового магнитного момента с орбитальным принимает различные значения для двух возможных взаимных ориентаций этих моментов. Корректный учет этого спин-орбитального взаимодействия осуществляется в релятивистской теории атома, созданной П. Дираком.
Энергетический спектр (24.10) уточняется следующим образом:
E
n
j
= –
– 2
.
(25.3)
Второе слагаемое в этом выражении называют формулой тонкой структуры. Оно определяет тонкую структуру спектра атома водорода. Безразмерная постоянная = k e2 / (c ħ) 1 / 137. Это – постоянная тонкой структуры.
Рис. 25.3
,
представляющего собой сумму спинового
и орбитального
моментов:
=
+
.
Суммирование моментов импульса микрочастиц производится по особым правилам, отражающим квантово-механические особенности микрообъектов. Правила квантования суммарного момента аналогичны правилам квантования слагаемых. Квантовое число суммарного момента может принимать несколько значений:
j = l + s, l + s – 1, … |l – s|. (25.4)
Квантовое число проекции суммарного момента равно сумме квантовых чисел слагаемых:
mj = m + .
Эти правила сложения моментов дает для атома водорода: j = l + ½ и j =|l – ½|. Поэтому все энергетические уровни, кроме s-уровней (l = 0), оказываются дублетными.
Схема энергетических уровней атома водорода на самом деле несколько отличается от рисунка 25.1. Отличия отражены на рисунке 25.3 без соблюдения масштаба. Стрелкам, мало отличающимся по длине, соответствуют пары близко расположенных спектральных линий – тонкая структура. Из формулы (25.3) следует, что состояния 2s1/2 и 2p1/2 должны иметь одну и ту же энергию. На самом же деле, как было установлено У. Лэмбом и Р. Ризерфордом, уровень 2p1/2 расположен несколько ниже, чем 2s1/2, что отражено на рисунке 25.3.
Объяснение лэмбовского сдвига было с достаточной точностью дано квантовой электродинамикой. Выяснилось, что он является одним из проявлений нулевых колебаний электромагнитного вакуума.
? Контрольные вопросы
Нарисуйте схему энергетических уровней атома водорода.
Чем отличаются схемы энергетических уровней атомов щелочных металлов от рисунка 25.1?
Что такое электронное облако? Опишите электронные облака 1s и 2p состояний.
Какой физический смысл имеет радиальная плотность вероятности?
Что такое спин-орбитальное взаимодействие, как оно влияет на энергию атома и как теоретически учитывается?
Расскажите о тонкой структуре энергетического спектра атома водорода.
Как складываются моменты импульса микрочастиц?
Расскажите о лэмбовском сдвиге.
Подсчитайте кратность вырождения n-го энергетического уровня атома водорода, пренебрегая спином.
Сколько спектральных линий входит в состав мультиплета, соответствующего головной линии серии Бальмера? Учесть, что возможны лишь переходы, для которых l = 1; j = 1, 0.
Вычислите фактор Ланде gЛ, определяющий связь полного магнитного момента атома
с полным моментом импульса
:
= –
gЛ
.
Учтите, что гиромагнитное отношение
для спинового момента импульса в два
раза больше по сравнению с орбитальным.
gЛ
= 1 +
.