Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по истории механики.doc
Скачиваний:
43
Добавлен:
01.05.2015
Размер:
148.48 Кб
Скачать

ПРЕДИСЛОВИЕ

Механика изучает общие закономерности, связывающие движение и взаимодействие тел, находящихся в различных состояниях – твердом, жидком и газообразном. В соответствии с этим механику можно разделить на следующие части: механика абсолютно твердого тела (теоретическая механика) и механика сплошной среды, включающая в себя механику жидкости и газа, механику деформируемого твердого тела (теория упругости, теория пластичности, теория трещин), механику ионизированного газа (механика плазмы).

Механика, изучая простейшие формы движения и взаимодействия материальных тел, отвлекается от многих их действительных свойств и использует в качестве допустимой абстракции понятие материальной точки и системы материальных точек. Материальная система может быть как дискретной, состоящей из отдельных материальных точек, так и сплошной, представляющей непрерывные распределения вещества и физических характеристик его состояния и движения. В последнем случае систему называют сплошной материальной средой или просто – сплошной средой. Простейшим случаем сплошной среды является неизменная среда или абсолютно твердое тело. Более общий образ изменяемой сплошной среды объединяет в механике как упругие и пластические, так жидкие и газообразные тела. Помимо обычных материальных тел, подобных воде, воздуху или металлу, в механике сплошной среды рассматриваются также особые среды – поля: электромагнитное поле, поле излучений, гравитационное поле (поле тяготения) и др.

В теоретической механике изучаются движения материальной точки, дискретных систем материальных точек и абсолютно твердого тела. Механика сплошной среды – обширная часть механики, посвященная движению газообразных, жидких и твердых деформируемых тел. Здесь с помощью и на основе методов и данных, развитых в теоретической механике, рассматриваются движения таких материальных тел, которые заполняют пространство непрерывно, сплошным образом, и расстояния между точками которых во время движения меняются.

Необходимо подчеркнуть, что механика основывается лишь на наиболее элементарных физических свойствах вещества. Схематизируя физические явления, механика не рассматривает молекулярное строение вещества и межмолекулярные взаимодействия.

1. Введение в теоретическую механику

Теоретическая механика – наука, которая изучает механическое движение материальных тел, т.е. изменение с течением времени положения их относительно друг друга. Так как состояние покоя есть частный случай механического движения, то в задачу теоретической механики входит также изучение равновесия материальных тел.

Движение материи происходит во времени и пространстве. За пространство, в котором происходит движение тел, принимают обычное трехмерное пространство. Для изучения движения вводят так называемую систему отсчета, понимая под ней совокупность тела отсчета (тела, относительно которого изучается движение других тел) и связанных с ним систем координатных осей и часов. В теоретической механике принимается, что время не зависит от движения тел и что оно одинаково во всех точках пространства и во всех системах отсчета (абсолютное время).

В связи с этим в теоретической механике, говоря о системе отсчета, можно ограничиться указанием только тела или системы координатных осей, связанных с этим телом. Движение тела происходит в результате действия на движущееся тело сил, вызванных другими телами. При изучении механического движения и равновесия материальных тел знание природы сил не обязательно, достаточно знать только их величины. Поэтому в теоретической механике не изучают физическую природу сил, ограничиваясь только рассматриванием связи между силами и движением тел.

1.1. Основные принципы теоретической механики

Теоретическая механика построена на законах Ньютона, справедливость которых проверена огромным количеством непосредственных наблюдений, опытной проверкой следствий (зачастую далеких и вовсе не очевидных), вытекающих из этих законов, а также многовековой практической деятельностью человека. Ньютоном были сформулированы основные законы механики, поэтому теоретическая механика часто называется механикой Ньютона. Законы Ньютона справедливы не во всех системах отсчета. В механике постулируется наличие хотя бы одной такой системы (инерциальная система отсчета).

Многочисленные опыты и измерения показывают, что с высокой степенью точности система отсчета с началом в центре Солнечной системы и осями, направленными к далеким "неподвижным" звездам, является инерциальной системой отсчета (она называется гелиоцентрической или основной инерциальной системой отсчета). Во многих задачах за инерциальную систему отсчета принимают систему, связанную с Землей. Ошибки, возникающие при этом, как правило, столь незначительны, что практического значения не имеют. Но есть ряд задач (например, связанных с расчетом траектории ракет), в которых уже нельзя пренебрегать вращением Земли. В этих случаях за неподвижную систему отсчета следует принимать введенную гелиоцентрическую систему отсчета. Приведенное выше определение механики, которую иногда называют "общей", может показаться недостаточно четким. Поэтому прежде всего следует установить место теоретической механики среди различных частей обшей механики. Для этого надо остановиться на предварительном рассмотрении некоторых понятий, положенных в основу теоретической механики. К ним принадлежат понятия о материальной точке, системе материальных точек и абсолютно твердом теле.

Теоретическая механика является естественной наукой, опирающейся на результаты опыта и наблюдений и использующей математический аппарат при анализе этих результатов. Как во всякой естественной науке, в основе механики лежит опыт, практика. Но, наблюдая какое-нибудь явление, мы не можем сразу охватить его во всем многообразии. Поэтому перед исследователем возникает задача выделить в изучаемом явлении главное, определяющее, отвлекаясь (абстрагируясь) от того, что менее существенно, второстепенно. Основные понятия теоретической механики возникли в результате обобщения многочисленных наблюдений над явлениями природы и специальных экспериментов с дальнейшим абстрагированием от конкретных частных особенностей каждого наблюдения в отдельности.

В теоретической механике метод абстракции играет очень важную роль. Отвлекаясь при изучении механических движений материальных тел от всего частного, незначительного и рассматривая только те свойства, которые в данной задаче являются основными, определяющими, мы приходим к рассмотрению различных моделей материальных тел, представляющих ту или иную степень абстракции. Так, например, если отсутствует различие в движениях отдельных точек материального тела или в данной конкретной задаче это различие пренебрежимо мало, то размерами этого тела можно пренебречь, рассматривая его как материальную точку. Такая абстракция приводит к важному понятию теоретической механики – понятию материальной точки, которая отличается от геометрической точки тем, что имеет массу. Материальная точка обладает свойством инертности, как обладает этим свойством тело и, наконец, она обладает той же способностью взаимодействовать с другими материальными телами, какую имеет тело. Так, например, изучая движение планет вокруг Солнца, можно иногда пренебрегать различиями движений отдельных точек планет относительно Солнца. Поэтому в первом приближении планеты в их движении вокруг Солнца можно рассматривать как материальные точки. Космические аппараты в их движении относительно небесных тел также можно рассматривать в первом приближении как материальные точки. Однако отметим, что одно и то же тело в одних случаях можно рассматривать как материальную точку, а в других – следует принимать во внимание его размеры. Например, изучая движение Земли вокруг Солнца, можно, как уже отмечалось, рассматривать Землю как материальную точку. Однако, изучая движение искусственного спутника Земли, следует принимать во внимание размер Земли, а в некоторых случаях и даже форму рельефа земной поверхности.

С понятием о материальной точке связано понятие о системе материальных точек. Системой называется такая совокупность материальных точек, движения и положения которых взаимно связаны. Понятие о системе принадлежит к наиболее общим понятиям современной теоретической механики. Например, каждое тело можно рассматривать как систему материальных точек, если мысленно разделить его на достаточно малые частицы вещества. Особое значение для механики имеет неизменяемая система материальных точек, в которой взаимное расположение принадлежащих ей точек остается неизменным.

Другим примером абстрагирования от реальных тел является понятие абсолютно твердого тела. Под ним понимается тело, которое сохраняет свою геометрическую форму неизменной независимо от действия других тел. Другими словами, если вещество, образующее неизменяемую систему, непрерывно заполняет некоторую часть пространства, то такая система называется абсолютно твердым телом. Из свойств неизменяемой системы следует, что расстояние между двумя произвольно выбранными точками абсолютно твердого тела не изменяется при его движении (что, правда, противоречит основам теории относительности) .

Совершенно ясно, что понятие об абсолютно твердом теле является результатом предельного абстрагирования от свойств реальных физических тел. В природе абсолютно твердых тел нет, так как в результате действия сил все материальные тела изменяют свою форму, т.е. деформируются, но во многих случаях деформацией тела можно пренебречь. При движении реальных твердых тел их форма и размеры могут изменяться в результате влияния различных внешних воздействий. Но в ряде случаев эти изменения формы и размеров (деформации) настолько незначительны, что для их выявления требуется применение специальной измерительной аппаратуры. Понятно, что в первом приближении при изучении механических движений такими деформациями твердых тел можно пренебрегать и рассматривать для упрощения реальные тела как абсолютно твердые. Следующее приближение определяется, например, методами сопротивления материалов. Например, при расчете полета ракеты мы можем пренебречь небольшими колебаниями отдельных ее частей, так как эти колебания весьма мало скажутся на параметрах ее полета. Но при расчете ракеты на прочность учет этих колебаний обязателен, ибо они могут вызвать разрушение корпуса ракеты.

Принимая те или иные гипотезы, следует помнить всегда о пределах их применимости, так как, забыв об этом, можно прийти к неверным результатам. Это происходит тогда, когда условия решаемой задачи уже не удовлетворяют сделанным предположениям и неучитываемые свойства становятся существенными. Поэтому необходимо обращать внимание на те предположения, которые принимаются при рассмотрении данного вопроса.

Теоретическая механика является той частью общей механики, которая изучает движения материальных точек, их дискретных систем и абсолютно твердых тел. Ясно, что факты, изложенные в теоретической механике, отражают наиболее общие закономерности механических движений, т.к. при их установлении приходится почти полностью абстрагироваться от конкретной физической природы реальных тел, рассматривая лишь их главные механические свойства. Законы, установленные в теоретической механике, как и другие законы естествознания, объективно отражают реально существующую действительность. На основе законов, установленных в теоретической механике, изучается механика сплошной деформируемой среды: теория упругости, теория пластичности, аэрогидромеханика, динамика газов и т.д.

В основе теоретической механики лежит система законов и аксиом, являющихся непосредственным следствием и обобщением установленных на протяжении многих веков наблюдений и опытных фактов. На основании законов и аксиом строится система теорем теоретической механики. Однако надо отметить, что аксиоматика в механике не получила еще такую завершенную форму, как в геометрии. Не выяснены, например, в достаточной степени объем и содержание основных положений механики, а значит, и замкнутость системы аксиом и отсутствие противоречий между ними.

Основные понятия теоретической механики развивались в неразрывной связи с практическими проблемами, возникавшими при историческом и экономическом развитии человечества. В ранний период развития механики ведущие проблемы возникали, в частности, в связи с запросами мореходства, для нужд которого были необходимы достаточно точные астрономические таблицы, показывавшие положения на небе Луны и ярких планет на протяжении года. В это время основное значение имели проблемы небесной механики. Кроме небесной механики, на развитие теоретической механики оказывали влияние такие существовавшие тогда отрасли техники, как военная, строительная и т.д. В настоящее время ведущая роль принадлежит проблемам техники и физики. На протяжении почти всей истории развития механики можно проследить взаимную связь между проблемами теоретической механики и другими отраслями науки и техники. Теоретическая механика в наши дни черпает проблемы, нуждающиеся в разработке, из конкретных вопросов космонавтики, вопросов автоматического регулирования, движения машин и управления производством, расчета и конструирования автоматических линий и систем роботов, из вопросов строительной механики и т.д. Так возникли новые разделы теоретической механики.

Например, современная теория колебаний систем материальных точек и теория устойчивости движения в значительной степени обязаны своим развитием необходимости изучения вибраций летательных аппаратов и различных деталей инженерных сооружений, машин и механизмов, необходимости создания надежной теории регулирования движения машин. Конечно, и теоретическая механика влияет на развитие отраслей техники, связанных с расчетами и конструированием деталей машин и инженерных сооружений. Этим и объясняется значимость теоретической механики как науки.

Механика за свою многовековую историю прошла огромный путь развития, но и в наши дни, как мы видим, она представляет живо развивающуюся науку. Укажем лишь на одну проблему, возникшую за последние десятилетия, проблему управления движением. Речь идет об установлении характера изменения сил, с помощью которых можно обеспечить движение по заранее выработанной программе. Сюда непосредственно примыкает проблема оптимального управления, например, каким образом управлять движением ракеты, чтобы она вышла на заданную орбиту при минимальном расходе топлива. Строго говоря, под механикой следует понимать совокупность достаточно обособленных отраслей знаний, базирующихся на законах Ньютона. Круг вопросов, изучаемых механикой, все время расширяется, охватывая все новые и новые области науки и техники. Это привело к тому, что ряд разделов теоретической механики вследствие специфики объектов исследования становится вполне самостоятельными науками. К их числу относятся такие дисциплины, как механика жидкости и газа, теория упругости, теория механизмов и машин, небесная механика, теория регулирования и др.

Сейчас под собственно теоретической механикой обычно понимают сравнительно узкий раздел механики, а именно: механику материальной точки, механику абсолютно твердого тела и их систем. Несмотря на это, теоретическая механика является одним из важнейших курсов, изучаемых в высшей школе, а ее законы и выводы широко применяются в целом ряде других предметов при решении самых разнообразных и сложных технических задач. Все технические расчеты при постройке различных сооружений, проектировании машин, изучении полета различных управляемых и неуправляемых аппаратов основаны на законах теоретической механики. Особое значение механика приобретает сейчас, когда началась эра интенсивного исследования космоса. Расчеты космических траекторий, разработки методов управления полетом представляют сложные задачи механики.

Отдавая должное значению механики как фундаменту современной техники, следует все же иметь в виду, что классическая механика лишь приближенно описывает законы природы, ибо в ее основе лежат постулаты, не вполне точно отражающие геометрию мира и характер механического взаимодействия тел. Это стало очевидным после создания Эйнштейном специальной теории относительности, на которой основывается релятивистская механика. Согласно теории относительности не существует абсолютного времени и абсолютного пространства, служащего лишь простым вместилищем тел. На самом деле свойства пространства и времени существенно зависят от взаимодействующих в них тел. Более того, механические характеристики, такие как масса, тоже оказываются переменными и зависящими от скорости движения. Однако становление релятивистской механики отнюдь не привело к отрицанию классической механики. Классическая механика, являясь частным (предельным) случаем релятивистской механики, не теряет своего значения, ибо ее выводы при скоростях движения, достаточно малых по сравнению со скоростью света, с большой точностью удовлетворяют требованиям многих отраслей современной техники. Предметом теоретической механики являются материальные тела, представленные своими простейшими моделями и рассматриваемые в связи с изменением их взаимного расположения в пространстве и времени. Такое "внешнее" движение моделей тел, рассматриваемое в отвлечении от "внутренних", молекулярных, атомных и других подобных "скрытых" движений материи в действительных телах, называют механическим движением – в противоположность общим движениям материи (тепловым, электрическим, магнитным и другим), изучаемым в физике. Теоретическая механика занимается только общими закономерностями механических движений материальных тел и механических (силовых) взаимодействий между ними, а также взаимодействий тел с физическими (тяготения, электромагнитными) полями.

Теоретическая механика делится обычно на три раздела: статику, кинематику и динамику. В статике изучаются методы преобразования одних совокупностей сил в другие, эквивалентные данным, выясняются условия равновесия, а также определяются возможные положения равновесия. В кинематике движения тел рассматриваются с чисто геометрической точки зрения, т.е. без учета силовых взаимодействий между телами. В динамике движение тел изучается в связи с силовым взаимодействием между телами.

Основным разделом теоретической механики, изучающим движения материальных тел в тесной связи с силовыми взаимодействиями их между собой, а также с физическими полями, является динамика. По классическому определению Ньютона, динамика должна "по явлениям движения распознать силы природы, а затем по этим силам изъяснить остальные движения". Этот тезис Ньютона лежит в основе динамики. В определенной степени вспомогательными по отношению к динамике служат статика и кинематика, которые по установившемуся порядку принято выделять в самостоятельные разделы теоретической механики.

Первый из них – статика – представляет собой общее учение о совокупности сил, приложенных к материальным телам, и об основных операциях над силами, позволяющих приводить их совокупности к наиболее простому виду. Вместе с тем в статике выводятся условия равновесия материальных тел, находящихся под действием заданной совокупности сил. В дальнейшем под равновесием материального тела подразумевается его покой относительно некоторой выбранной системы отсчета, т.е. рассматриваются относительные равновесие и покой. Так, тело, покоящееся относительно Земли, на самом деле совершает вместе с ней далеко не простые движения относительно так называемой "неподвижной" системы координат, связанной с удаленными звездами. Только в случае самой простой модели – материальной точки – понятие равновесия, т.е. изолированности от действия сил, связывают с ее прямолинейным равномерным движением по инерции относительно данной системы отсчета, включая сюда и ее покой относительно этой системы. Движение твердого тела по инерции, т.е. в отсутствие приложенных к нему извне сил, может быть также названо равновесным, но оно оказывается настолько сложным, что в этом случае под равновесием понимают только покой тела относительно рассматриваемой системы отсчета.

В кинематике изучаются способы количественного описания существующих движений материального тела в отрыве от силовых взаимодействий его с другими телами или физическими полями. Недаром кинематику называют иногда "геометрией движения", включающей, конечно, и понятия времени. Основными характеристиками движений в кинематике являются: траектория, пройденный путь, скорость и ускорение движения. Велико разнообразие изучаемых теоретической механикой движений. Это – орбитальные движения небесных тел, искусственных спутников Земли, ракет, колебательные движения (вибрации) в широком их диапазоне – от вибраций в машинах и фундаментах, качки кораблей на волнении, колебаний самолетов в воздухе, тепловозов, электровозов, вагонов и других транспортных средств при их движении до колебаний в приборах управления. Все эти и многие другие встречающиеся в природе и технике движения образуют широкое поле практических применений механики.

Критерием истинности наших знаний является факт, практика. Наше сознание отображает предметы, реально существующие вне вас. Практика позволяет проверять образы, возникающие в нашем сознании, и отделять реальность от мнимых представлений. Поэтому теория и практика в научных исследованиях неразрывно связаны между собой. Правильная последовательность научного исследования состоит в предварительных наблюдениях, накоплении экспериментальных фактов, затем в объединении результатов опытов и наблюдений на основании обобщающих выводов, связанных с введением некоторых абстрактных представлений, и, наконец, в проверке на практике обобщающих выводов из абстрактных представлений. Так, например, на основании наблюдений и обобщающих выводов великий английский ученый Исаак Ньютон нашел закон всемирного тяготения, затем этот закон был проверен в астрономической практике, а проверка привела к открытию планет Нептун в XIX веке и Плутон в XX веке.