Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика / Лабораторные / Volnovaya_optika1.doc
Скачиваний:
16
Добавлен:
27.04.2015
Размер:
1.37 Mб
Скачать

3.3. Выполнение работы

Упражнение 1. Определение концентрации раствора сахара.

  1. Включить прибор в сеть. После включения тумблера на корпусе трансформатора должна загореться лампочка (рис.3.8).

  2. Ввести оранжевый светофильтр с помощью рамки 6.

  3. Окуляр зрительной трубы 13 поля зрения и отсчетную лупу 1 шкалы необходимо установить по глазу наблюдателя. Для этого вращением оправ их передвигают вдоль оси, чтобы в поле зрения окуляра зрительной трубы 13 вертикальная линия, разделяющая поле зрения на две половины, была четко и ясно видна, а в поле зрения отсчетной лупы 1 четко и ясно были видны цифры и штрихи шкалы и нониуса. Это делается при отсутствии в камере поляриметрической трубки.

  4. Произвести "нулевую установку" прибора (нуль прибора), т.е. определить φ0 прибора. Для этого, при отсутствии в камере прибора поляриметрической трубки, вращая рукоятку 12, добиться полной однородности обеих половинок поля зрения (см. рис.3.9б). При малейшем повороте рукоятки 12 в ту или иную сторону (φ0+Δφ, φ0-Δφ) освещенности половинок поля зрения будут меняться: то одна половина будет темной, то другая, так, как показано на рис.3.9а и 3.9в.

Если в момент полной однородности (рис.3.9б) поля зрения нулевые деления шкалы и нониуса совпадают, то φ0 =0. Если же нулевые деления не совпадают при равенстве освещенности, то берут отсчет и записывают φ0. Таким образом, отсчет φ0 берется всегда в момент равенства освещенности обеих половинок поля зрения.

Отсчет φ0 повторить три раза, всякий раз нарушая равенство освещенности обеих половинок поля зрения с помощью рукоятки 12 (рис.3.8).

Определить среднее арифметическое из числа n измерений φ0 ср. Значение φ0 будет давать нулевое положение прибора, нуль прибора. Измерения занести в табл.3.1.

  1. Взять поляриметрическую трубку и налить в нее известный раствор N1. Трубку завинтить и вложить в камеру прибора.

Если теперь посмотреть в окуляр зрительной трубы 13 (рис.3.8), то увидим, что однородность поля зрения нарушилась, т.е. одна половина поля зрения стала темной, а другая светлой. Вновь добиться одинаковой минимальной освещенности поля зрения, как это делалось в п.4.

По шкале определить угол φ1 с точностью до 0,10. Измерения φ1 повторить три раза для одного и того же раствора и вычислить φ1 ср. Отсчеты φ0 могут быть как положительными, так и отрицательными. Отсчет берется со знаком минус, когда нуль нониуса расположен левее нуля шкалы. При этом десятые доли градуса берутся в левой части нониуса, там, где деление нониуса, точнее, лучше всего совмещается с одним из делений шкалы. Положительный отсчет - когда нуль нониуса правее нуля шкалы (рис.3.10).

  1. Измерения и вычисления занести в табл. 3.1. Угол поворота плоскости поляризации α1 в делениях шкалы найти как разность:

α1= φ1 ср - φ0 ср

  1. Раствор N1 из трубки вылить в ту же колбу N1.

  2. То же самое (пункты 5,6,7) повторить с другими эталонными растворами.

  3. По полученным данным (табл.3.1) построить градуировочную кривую сахариметра, т.е. график зависимости угла поворота плоскости поляризации α в делениях шкалы от концентрации сахара в растворе С. Для этого по оси Х отложить значения концентрации сахара в процентах, по оси Y - значения угла поворота в градусах (рис.3.11).

По градуировочной кривой можно сказать, что данный угол поворота плоскости поляризации соответствует такой-то концентрации раствора. В этом и заключается смысл градуировки сахариметра.

  1. Определить неизвестную концентрацию раствора сахара. Для этого в поляриметрическую трубку налить раствор неизвестной концентрации и определить угол поворота плоскости поляризации данным раствором φx, аналогично тому, как это делалось в пунктах 5,6,7, вычислить φx ср. и найти αx 0= φx ср. - φ0 ср.

Пользуясь градуировочным графиком (рис.3.11) по значению αx определить значение неизвестной концентрации. Для этого по оси Y отложить значение αx и провести прямую до пересечения с кривой, опустить перпендикуляр на ось Х и взять значение Cx там, где этот перпендикуляр пересекает ось концентраций. Масштаб выбирают такой, чтобы удобно укладывались на осях рабочие области (рабочие интервалы ΔC и Δα).

  1. Результаты измерений занести в табл.3.1.

Таблица 3.1

φ0, град

φ0 ср,,град

С, %

φ, град

φср, град

α

1.

2.

3.

С1

1.

2.

3.

С2

1.

2.

3.

Примечания:

  1. Покровное стекло у трубки не следует прижимать очень сильно, так как при этом оно может стать оптически активным, т.е. вызвать дополнительное вращение плоскости поляризации.

  2. Наливать раствор в трубку следует медленно, чтобы избежать образования воздушных пузырьков, которые затрудняют проведение измерений.

Упражнение 2. Проверка закона Малюса. Определение коэффициента

преломления вещества с помощью закона Брюстера

Практическая часть

Все детали установки располагаются на оптической скамье. В качестве источника излучения используется газовый гелий-неоновый лазер, имеющий линейно-поляризованное излучение.

При изучении закона Малюса используется еще поляризатор, выполняющий роль анализатора, так как излучение лазера линейно поляризовано, а также измеритель относительной интенсивности лазерного излучения. Для изучения закона Брюстера используется тот факт, что при падении света на диэлектрическую пластинку под углом Брюстера, составляющая электрического поля Е, параллельная плоскости падения, не отражается. Поэтому, если сориентировать плоскость поляризации лазерного излучения параллельно плоскости падения излучения на излучаемый образец, то при угле падения, равном φБр=arctg n, где n - коэффициент преломления диэлектрика, отраженного луча быть не должно. Реально же, интенсивность отраженного луча проходит через минимум при плавном изменении угла падения, что легко обнаруживается визуально. Установка в этом случае состоит из лазера, сориентированного соответствующим образом, и столика, на котором крепится исследуемый образец.

Порядок выполнения упражнения

I. Закон Малюса

  1. Установить на оптической скамье кроме лазера поляризатор-анализатор и фотодатчик измерителя относительной интенсивности лазерного излучения.

  2. Лаборант включает лазер. Добиться нормального расположения плоскости анализатора к лучу лазера и четкого попадания прошедшего луча на фотодатчик.

  3. Включить измеритель относительной интенсивности лазерного излучения. Вращая анализатор, добиться максимальных показаний прибора. Этим мы достигнем параллельности осей поляризации лазерного излучения и анализатора.

  4. Снять зависимость J интенсивности прошедшего лазерного излучения от угла α между осями поляризации лазерного излучения и анализатора. Построить график J= f(α).

  1. Закон Брюстера.

  1. Установить на оптической скамье столик с образцом.

  2. Лаборант включает лазер. Добиться перпендикулярного положения плоскости диэлектрической пластинки к лазерному излучению. Плоскость поляризации лазерного излучения должна быть сориентирована параллельно плоскости падения на образец. Для более четкой ориентации плоскости поляризации можно воспользоваться анализатором.

  3. Отметив первоначальное положение стрелки-указателя держателя образца относительно лимба, плавно повернуть держатель с образцом вокруг вертикальной оси до получения минимальной интенсивности отраженного луча, наблюдаемого на экране. По достижении минимальной интенсивности вновь отметить положение стрелки относительно лимба. Разность показаний и дает величину Брюстера для данного образца.

  4. Повторить те же операции для других образцов.

  5. Заполнить таблицу.

образца

φБр

n = tg φБр

Соседние файлы в папке Лабораторные