Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции / F_101

.doc
Скачиваний:
23
Добавлен:
17.04.2013
Размер:
153.6 Кб
Скачать

Глава 10

Физические основы плазменного оборудования

§ 10.1. Основные понятия и характеристики низкотемпературной плазмы

Плазмой, в отличие от потоков ионов или электронов, называют частично (слабо) ионизированный, в целом электронейтральный объем газа, содержащий примерно равное количество положительно и отрицательно заряженных частиц.

Более строгое определение плазмы

Плазма - это система заряженных и нейтральных частиц с полным зарядом, равным нулю, у которой пространственный масштаб разделения зарядов существенно меньше ее размеров.

К низкотемпературной относят плазму со среднемассовой температурой газа от комнатной до равной примерно 5104 К. Низкотемпературная плазма может быть термической, т.е. оказывающей тепловое воздействие на вещество, и холодной, т.е. не оказывающей такого воздействия.

Характеристика плазмы - температура

Температура T - эквивалент энергии W (единица энергии в плазме - один электрон-вольт, равный 11600 К). В плазме как в системе разнородных частиц, имеющих различный заряд и массу, чаще всего помещенной во внешние электрические и магнитные поля, энергия этих частиц существенно различается: температура электронов Te > Ti > Tn, где Ti - температура ионов, а Tn - температура нейтральных частиц.

Масса электрона значительно меньше массы иона. Энергия частиц в плазме приобретается за счет увеличения энергии электрона при его движениях во внешних полях и передается другим частицам в результате процессов столкновения. Обычно Te >> Ti > Tn. Такая плазма называется неравновесной. Холодная низкотемпературная плазма чаще всего существенно неравновесна и образуется в условиях пониженного давления, когда длина свободного пробега частицы достаточно велика, чтобы на этом пути электрон приобрел значительную энергию (Te104 К).

Термическая низкотемпературная плазма существует, как правило, в условиях нормального атмосферного или повышенного давления, когда длина свободного пробега достаточно мала, количество актов столкновения в плазме резко возрастает и энергии частиц за счет этого почти выравниваются. Однако в этом случае должны существовать внешние условия, которые быстро компенсируют потери энергии при столкновениях, т.е. эффективность передачи энергии от внешнего источника должна быть очень велика. Обычно и величина передаваемой энергии должна быть значительна (порядка нескольких киловатт и выше). Тогда устанавливается соотношение Te Ti Tn , и плазма может называться квазиравновесной или равновесной. Бессмысленно говорить о температуре плазмы в целом. Необходимо всегда указывать температуру всех ее компонентов.

При оценке характеристик плазмы необходимо учитывать такие понятия, как концентрация заряженных или нейтральных активных частиц, а также степень ионизации плазмы.

Ионизация в плазме

И

Рис.10.1.

онизация
- отрыв части электронов от атомов, который может осуществляться несколькими путями: термическим (термическая ионизация), излучением различных видов и электрическим разрядом. В технологических плазменных устройствах - ионизация в электрических газовых разрядах различного вида. Механизм ионизации в разряде заключается в образовании электронной лавины (рис.10.1). Обязательное условие развития лавины - электрическое или электромагнитное поле такой величины, чтобы оно сообщало электрону на длине свободного пробега больше энергии, чем нужно для выбивания из атома еще одного электрона. Такой механизм - ионизация электронным ударом.

Если обозначить концентрацию электронов или ионов в единице объема ne или ni, а концентрацию частиц газа при соответствующих условиях nr , то степень ионизации плазмы можно охарактеризовать соотношением или . Обычно степень ионизации низкотемпературной плазмы составляет величину долей процента при концентрации электронов [см-3].

Элементарные процессы в плазме

Перечень элементарных процессов в плазме не ограничивается процессом ионизации. Помимо него в плазме постоянно происходят процесс рекомбинации, сопровождаемый излучением, процесс упругих соударений с обменом энергией, процессы перезарядки, а также диссоциации молекул на атомы без ионизации. Динамическое равновесие большинства этих процессов можно оценить при введении следующих понятий:

- частота столкновения частиц в плазме;

- сечение столкновений;

- вероятность столкновительного процесса.

Сечением столкновений , имеющим размерность площади, называют эффективную геометрическую площадь препятствия, которым оказывается частица-мишень для пучка падающих на нее частиц;  зависит от типа столкновений, относительной скорости частиц, типа взаимодействующих частиц. В теории плазмы имеют особое значение сечение ионизации i и сечение упругих столкновений "электрон-атом" с передачей импульса m, которые связаны соотношением

,

где - вероятность ионизации или функция ионизации, зависящая от энергии электрона. По сути дела, представляет собой число благоприятных для ионизации соударений по отношению к их общему числу. Для различных газов различна (рис.10.2) и может быть представлена в виде зависимости

,

Рис.10.2.

где i - потенциал ионизации, эВ; A, B - константы, зависящие от рода газа. Потенциалы ионизации некоторых газов приведены в табл.10.1.

Таблица 10.1

Газ
H
N
O
F
Cl
Ar

i, эВ

13,6

14,6

13,6

17,4

13,0

15,8

§ 10.2. Оценка величины концентрации электронов ne

Концентрация электронов - основная характеристика плазмы

Используя приведенные понятия и закономерности, можно получить представление о такой важной характеристике плазмы, как концентрация электронов ne. Для этого необходимо рассмотреть для каждого конкретного случая баланс этой величины (прирост и убыль). Приращение dne за время d можно оценить из выражения

,

где ve - скорость электронов, м/с.

В большинстве плазменных технологических устройств используются многоатомные газы, и одним из результатов столкновительных процессов с их молекулами является диссоциация. В конечном счете именно этот процесс ответствен за многие физико-химические превращения, используемые в различных технологических задачах.

Скорость диссоциации

Для оценок скоростей образования активных частиц, участвующих в физико-химических процессах в плазме и на поверхности образцов, помещенных в плазму, полезно оценить скорость диссоциации. Скорость диссоциации молекул некоторых сложных веществ v можно определять из соотношения, вытекающего из предыдущей формулы:

,

где Wд - пороговая энергия диссоциации молекул газа, эВ; f(We) - функция распределения электронов по энергиям; - вероятность диссоциации, зависящая от рода газа и энергии электрона и определяемая через сечение диссоциации д как

где A, B - константы, зависящие от рода газа.

§ 10.3. Функция распределения электронов по энергиям

Об энергии электронов в плазме

В плазме электроны могут получать различные энергии, однако устанавливается какое-то динамическое равновесие. В первом приближении оно может быть описано распределением Максвелла (рис.10.3). Однако в конкретных случаях оно может отличаться от распределения Максвелла и зависеть от внешних условий, причем существенно от наличия и характеристик внешних электромагнитных, электрических и магнитных полей.

Из рис.10.3 видно, что электроны, имеющие энергию We < Wд, фактически не участвуют в процессах диссоциации и образования активных частиц. Отсюда следует, что для эффективности процессов в плазме необходимо либо добиваться сдвига максимума функции распределения электронов по энергиям (ФРЭЭ) вправо, либо уменьшать пороговую энергию диссоциации Wд и увеличивать вероятность диссоциации выбросом конкретных химических соединений.

Ч

Рис.10.3.

астота столкновений электрона

Величина e в приведенной зависимости для скорости диссоциации представляет собой частоту столкновений электрона с атомом или молекулой и может быть вычислена из выражения

,

где ve и le - скорость и длина свободного пробега электрона.

Скорость ve однозначно связана с кинетической энергией:

,

а le определяется длиной свободного пробега молекулы газа lг при соответствующих условиях:

.

Величина lг для каждого рода газа при определенном давлении может быть рассчитана из молекулярно-кинетической теории газов.

Общие контрольные вопросы к главе 10

1. Чем различаются понятия "высокотемпературная" и "термическая" плазма, "низкотемпературная" и "холодная" плазма?

2. Можно ли считать равновесной плазму, в которой существенно различаются температуры ионов и электронов?

3. Каковы основные механизмы ионизации в газовых разрядах?

4. Чем различаются понятия "сечение ионизации" и "вероятность ионизации"?

5. Каковы размерности таких величин, как "концентрация электронов", "скорость диссоциации" и "средняя скорость электронов в плазме"?

116

Соседние файлы в папке Лекции