Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Уч пособие 11 антроп.doc
Скачиваний:
11
Добавлен:
17.04.2015
Размер:
345.09 Кб
Скачать

1 2 3 │ │ │ │ │ │ 1 2 3

└─> * * ││ ─┐ ┌─ * * │<─┘

│ │ ** │ │ │ │ *

│ │ ││ │ ││ │ │ │ │

дефектная │ ││ ││ │ нормаль-

гамета: └> ** ** │││ <┘ ная гаме-

лишняя хро- ││ ││ *** та

мосома №3 ││ ││ │││

зигота

трисомия

Изменение количества отдельных хромосом или анэуплоидии проявляются в форме моносомий и полисомий (трисомии, тетрасомии, пентасомии и т. д.). Моносомии характеризуются утратой зиготой одной хромосомы. У человека, по-видимому, только одна моносомия – синдром Шерешевского-Тернера (нет одной из Х-хромосом) совместима с жизнью. Трисомии встречаются чаще. Наиболее известна из них трисомическая форма синдром Дауна (лишняя 21-я хромосома это - аутосомная трисомия). Примером половых трисомий являются люди с синдромами Кляйнфельтера (ХХY –мужчины), сверхженщины (ХХХ), супермена (XYY).

Механизм возникновения анэуплоидий (см. рис. 5), связан с нарушением мейоза, в частности, расхождения хромосом к полюсам клетки. Если к одному из полюсов будущей гаметы человека отойдет не 23, а 22 хромосомы, то другой половине достанется 24. При слиянии таких гамет с нормальной гаметой (23 хромосомы) в первом случае возникнет моносомия (22+23=45), во втором трисомия (24+23=47).

Популяционная генетика.

Популяция – это группа организмов одного вида, которая обычно обитает на четко ограниченной территории. Общая генетическая реакция всей популяции определяет ее выживание и является предметом изучения популяционной генетики.

Знание основных законов популяционной генетики позволяет понять механизмы адаптивной изменчивости видов, помочь разобраться в практических вопросах медико-генетического консультирования людей и даже осмыслить ряд мировоззренческих проблем.

Любознательных студентов иногда смущает вопрос: если аллельные гены карих глаз доминируют над генами голубых глаз, почему не исчезают голубоглазые люди? Математическое доказательство этого факта впервые сформулировали независимо друг о друга Харди и Вайнберг в 1908 году.

Каждый ген может существовать в нескольких различных формах, которые называют аллелями. Число организмов популяции, несущих определенный аллель, определяет частоту данного аллеля (частоту гена). Например, ген, определяющий возможность пигментации кожи, глаз и волос у человека в 99% случаев представлен "нормальным" аллелем. Второй возможный вариант этого гена - аллель альбинизма, который делает отложение пигмента невозможным. Его частота 1%. В математике частоту аллелей выражают не в процентах, а в частях (чаще десятичных) от единицы. В данном примере частота доминантного-нормального аллеля будет равна 0,99, а частота рецессивного аллеля альбинизма 0,01. При этом сумма частот аллелей всегда равна единице (0,99 + 0,01 =1 ). Генетика заимствовала у математической теории вероятностей символы "p"-для обозначения частоты доминантного аллеля и "q"-для частоты рецессивного аллеля. В приведенном примере с пигментацией у человека p+q = 1 (уравнение вероятностей)

0,99+0,01 = 1

Значение этого уравнения в том, что, зная частоту одного аллеля, можно найти частоту другого:

p=1-q – частота доминантного аллеля

q=1-p – частота рецессивного аллеля

Например, если рецессивный аллель имеет частоту 5% или q=0,05, тогда доминантный аллель будет иметь частоту p=1-0,05=0,95 или 95%.

Закон Харди-Вайнберга утверждает: частоты доминантного и рецессивного аллелей разных поколений идеальной популяции постоянны (идеальной можно назвать изолированную популяцию больших размеров, без новых мутаций, где спаривание происходит случайно, все генотипы одинаково плодовиты, а поколения не перекрываются). Этот закон можно выразить в уравнении Харди-Вайнберга

p2 + 2pq+q2=1, где

p2 -частота доминантных гомозигот (АА)

2pq -частота гетерозигот (Аа)

q2 -частота рецессивных гомозигот (аа)

Такое распределение возможных генотипов связано со случайным характером распределения гамет в процессе мейоза и основано на теории вероятностей, математически представляет собой квадрат уравнения вероятностей p+q=1 (уравнение вероятностей), (p+q)2=12; (p+q)(p+q)=1;

p2 + 2pq+q2=1 (уравнение Харди-Вайнберга)

Имея два уравнения для вероятностей частоты аллельных генов и наблюдая частоту рецессивных гомозигот (q2), можно вычислить число гетерозигот (2pq) – носителей скрытых генов и частоты аллельных генов

(p-доминантного и q-рецессивного).

Пример решения задачи популяционной генетики.

Дано: один альбинос (аутосомно-рецессивный тип наследования) приходится на 10000 людей с нормальной пигментацией.

Найти: на сколько людей приходится 1 скрытый носитель гена альбинизма.

Решение: частота q2–рецессивных гомозигот (аа) известна из условия задачи: q2=1:10000=0,0001, необходимо найти частоту гетерозиготных носителей Х=2pq. Зная q2, можно найти частоту рецессивного аллеля q:

q= √q2 = √0,0001 = 0.01

Теперь, зная q, можно найти частоту доминантного аллеля p

p = 1-q = 1-0,01 = 0,99

Зная p и q, можно найти частоту гетерозиготных носителей Х=2pq

Х = 2pq=20,99 • 0,01 = 0,0198 = 0,02 или 2%.

Если 2 человека из 100 являются носителями аллельного гена альбинизма, тогда 1 носитель приходится на 50 человек.

Такие вычисления показывают чрезвычайно высокую частоту рецессивных генов в популяции при относительно редких случаях проявления наследственных заболеваний в фенотипе. Считается, что каждый человек имеет минимум 8 крайне нежелательных рецессивных генов, подавленных их нормальными аллелями.

В нацистской Германии проводились в жизнь "евгенические" программы, основанные на физическом уничтожении лиц, страдающих наследственными болезнями. Несостоятельность таких способов улучшения человеческой породы ясна из закона Харди-Вайнберга. Поскольку большая часть нежелательных рецессивных генов скрыта в гетерозиготных организмах, то даже поголовное уничтожение всех выявленных рецессивных гомозигот практически не изменит числа больных в следующем поколении. Для тотального улучшения генофонда нации требуется уничтожение всех людей по обвинению в носительстве десятка дефектных генов.

Среди дефектных генов существуют летальные, которые в гомозиготном рецессивном состоянии приводят к гибели их обладателя, например, от образования внутренних спаек легких. Большая часть самопроизвольных абортов обусловлена именно летальными генами. Процент этих абортов не снижается по той же причине, что и частота наследственных болезней.

На наше счастье, большая часть новых мутаций делает испорченные гены рецессивными по отношению к нормальным доминантным аллелям. Новые дефектные рецессивные гены долго (много поколений) не проявляются в популяции. Однако, в каждом следующем поколении суммируются старые и новые мутации. Возрастание такого генетического груза, пополняющегося особенно интенсивно в наше время (рост мутагенных факторов), ведет популяции к вырождению.

Генетическое вырождение людей усугубляется ослаблением естественного отбора в связи с успехами современной медицины. Альтернативой этому процессу могут быть только целенаправленные вмешательства в геном, но генная инженерия человека пока в зачаточном состоянии.

Адаптация вида (микроэволюция) – это процесс приспособления популяций к изменившимся условиям существования.

Новые сочетания генов, которые возникают преимущественно на базе комбинативной изменчивости при половом размножении, определяют уникальные фенотипы отдельных особей. Особи с неудачными (в данных условиях среды обитания) комбинациями генов и проявившимися испорченными генами, удаляются (элиминируются) из популяции, но это, в соответствии с законом Харди – Вайнберга, практически не снижает риск появления аналогичных больных людей в следующем поколении.

В реальных популяциях, имеющих ограниченные размеры, давление некоторых факторов среды обитания может приводить к исчезновению или значительному снижению части аллельных генов. Представьте аллельный ген, который встречается с частотой 0,01, т.е. у одного человека из 100. Если размер популяции достаточно велик (несколько миллионов особей), то случайная смерть такого человека, никак не скажется на генофонде этой популяции. Такие аллели будут тиражироваться в следующих поколениях. Если обладатель такого аллеля живет в замкнутой общине (несколько сотен), изолированной от человечества географически или социально, например, религиозный запрет на брак с иноверцами, то смерть такого человека будет означать для его популяции потерю аллеля и обеднение генофонда. Внешне это выражается в постепенном выравнивании фенотипов и росту числа больных наследственными заболеваниями.

История знает случаи вырождения династий египетских фараонов вследствие узости круга лиц, которым позволяли вступать в брак. Можно сказать, что фараоны жили в малочисленной популяции. В этом случае неизбежны близкородственные браки, ведущие к вырождению. Механизм такого вырождения сводится к увеличению коэффициента инбридинга.

Инбридинг, или близкородственное скрещивание, неизбежно сопровождается снижением жизнеспособности популяции – инбредной депрессией. При этом большая часть генов переходит в гомозиготное состояние, что манифестирует груз наследственных болезней.

Чем ближе родство лиц вступающих в брак, тем выше коэффициент инбридинга и риск рождения больных детей. Замкнутая ограниченная популяция неизбежно повышает средний коэффициент инбридинга, что ведет к ускорению темпов вырождения.

При отдаленном скрещивании – аутбридинге наблюдается прямо противоположная картина – гетерозис – или "гибридная сила". При гетерозисе заметно улучшается качество потомства. Если родители принадлежат к разным популяциям, то они имеют не совпадающий генетический груз. Другими словами, в первой популяции дрейфуют одни наследственные болезни, во второй – другие. При этом дефектные рецессивные аллели первой популяции разбавляются и маскируются нормальными доминирующими генами второй популяции.

Рисунок 6. Механизм инбредной депрессии.

отец-здоровый носитель мать-здоровый носитель

дефектных генов bce дефектных генов a g

A│ │A A│ │a

B│ │b B│ │B

C│ │c C│ │C

* * ────────────┬────────── * *

D│ │DD│ │D

E│ │eE│ │E

F│ │F ┌──────┴─────┐ F│ │F

G│ │G │ │ G│ │g

возможный генотип детей (оба здоровые

носители дефектных генов-a,b,c,e,g)

сын дочь

AaAa

bBbB

cCcC

инбридинг * * ─┐ + ┌─ * *

("кровосмешение") │DD │ │ │DD

eE │ │ │eE

FF │ │AA │ │FF

Gg │ │bb │ │Gg

│ │cc

* * ┘

DD

ee

FF

GG

больной ребенок, имеющий

дефектные гены bb, cc, ee

в гомозиготном рецессивном

состоянии

Лекция 4.

Онтогенез.

Размножение на молекулярном уровне происходит путем воспроизводства генетической информации (репликация ДНК).

В случае бесполого размножения точная передача всей последовательности нуклеотидов от материнской клетки к дочерним приводит к их полной идентичности. Так, деление одной бактерии, как правило, приводит к возникновению колонии микроорганизмов, унаследовавших все свойства исходной материнской клетки. Для такого бесполого размножения достаточно единственной особи вида. Однако, если такая группа идентичных особей попадает в неблагоприятные условия среды обитания (воздействие антибиотиков), то вероятность выживания этой популяции низкая. Гибель любой бактериальной клетки от действия противомикробного препарата покажет возможность гибели всей популяции. Эта слабость бесполого размножения используется при определении чувствительности патогенных бактерий к действию антибиотиков. Бактерии из организма больного человека высевают на питательную среду, в которой имеются диски, пропитанные разными антибиотиками. Если микробы вокруг диска не растут, то это свидетельствует об эффективности антибиотика. Для лечения выбирают тот из них, который дал вокруг своего диска самую большую зону отсутствия роста микроорганизмов. Бесполым путем размножаются клетки человеческого эмбриона, а в течении всей жизни происходит регенерация частей нашего тела. Многие растения и относительно простые животные, например, кишечнополостные используют бесполое размножение, как основной способ оставить потомство.

Люди используют второй способ размножения - "половой". В большинстве случаев для его осуществления необходимо взаимодействие двух особей вида, но главная особенность полового размножения заключается в другом. При половом размножении происходит пересортировка генетического материала и формирование неидентичных дочерних особей. Эту особенность полового размножения называют "комбинативной изменчивостью". Особи вида, использующие половое размножение, не одинаково реагируют на воздействие факторов среды обитания. Если вредное воздействие среды убивает одну особь, то это не означает, что такое же воздействие погубит всю популяцию. Так, эпидемии особо опасных инфекций (чума, натуральная оспа, холера) уничтожали значительную часть человечества, но всегда находились люди с высокой устойчивостью к этим заболеваниям и выживали.

Таким образом, благодаря половому размножению и комбинативной изменчивости шансы вида на выживание значительно повышаются.

Клеточный цикл. Время от деления клетки до следующего деления или от деления до смерти называют клеточным циклом.

Типичный клеточный цикл состоит из трех основных частей:

1 – интерфаза

2 – кариокинез – деление ядра (митоз или мейоз)

3 – цитокинез – деление цитоплазмы.

Интерфаза – это основная часть жизни клетки, в течение которой клетка выполняет свою функцию и подготавливается к делению. Продолжительность интерфазы может изменяться от нескольких часов (эпителий двенадцатиперстной кишки) до нескольких десятков лет (нервные и мышечные клетки взрослого человека). Интерфаза делится на 3 части:

G1 – пресинтетический (постмитотический) период;

S – синтетический период;

G2 – постсинтетический (премитотический) период.

В пресинтетическом периоде в клетках происходит выполнение её основной функции, опосредованное синтезом белков и всех видов РНК. Этот период интерфазы может длиться годами и десятилетиями.

В синтетическом периоде происходит репликация ДНК и количество генетического материала удваивается. Так, у человека в каждой клетке количество хромосом увеличивается с 46 до 92. Они остаются связанными друг с другом попарно, но в интерфазном ядре при обычной световой микроскопии хромосомы не видны. Этот период интерфазы длится у млекопитающих 6-12 часов.

В постсинтетическом периоде происходит подготовка органоидов для деления ядра и запасается энергия. Этот период интерфазы длится у млекопитающих 3-6 часов.

Кариокинез – это процесс деления клеточного ядра. Кариокинез у человека протекает по двум вариантам: митозу и мейозу.

Митоз состоит из 4 фаз: профазы, метафазы, анафазы и телофазы. Длительность митоза не менее 10 минут.

Профаза. Скручивание хромосом в спираль (спирализация), при этом они укорачиваются, утолщаются и становятся заметными в световой микроскоп. Они имеют Х-образную форму, так как остаются соединенными после репликации ДНК в интерфазе. Центриоли расходятся к полюсам клетки и формируются нити веретена деления. Растворяется ядерная оболочка.

Метафаза. Хромосомы выстраиваются по экватору клетки.

Анафаза. Под влиянием тяги нитей веретена деления происходит расщепление удвоенных хромосом и их движение к полюсам клетки (у человека по 46 хромосом движутся к каждому полюсу).

Телофаза. Происходит деспирализация (раскручивание спирали), утончение и удлинение хромосом. При этом хромосомы перестают быть видимыми в световой микроскоп. Распадаются нити веретена деления. Формируются ядерные оболочки. Телофаза митоза переходит в третью стадию клеточного цикла – цитокинез, завершающий деление цитоплазмы на две дочерние клетки.

Итогом митотического деления клетки является формирование диплоидных дочерних клеток, которые по генетической информации ДНК идентичны материнской клетке.

Биологический смысл митоза – точная передача наследственной информации к дочерним клеткам. Митоз используется для восстановления утраченных клеток (регенерации); при делении клеток зародыша и плода во время внутриутробного развития человека; является базой для бесполого размножения.

Мейоз состоит из двух последовательных делений. Каждое деление состоит из 4 стадий: профазы, метафазы, анафазы и телофазы.

Первое мейотическое деление.

Профаза I имеет важное отличие от профазы митоза. Удвоенные (в течение интерфазы I) Х-образные молекулы ДНК гомологичных хромосом в процессе спирализации сближаются и образуют тетрады (биваленты) – учетверенные хромосомы. У человека их 23. Это слияние называется конъюгацией гомологичных хромосом. Далее, происходит кроссинговер – обмен гомологичных участков конъюгированных хромосом. При световой микроскопии заметны точки перекреста гомологичных хромосом – хиазмы (2-3 в каждой тетраде). Последующие события аналогичны профазе митоза: ядерная оболочка растворяется, центриоли расходятся к полюсам клетки, формируются нити веретена деления.

Метафаза I. Тетрады (биваленты) выстраиваются по экватору клетки.

Анафаза I. Под влиянием тяги нитей веретена деления происходит расщепление тетрад на диады (удвоенные хромосомы) и их движение к полюсам клетки (у человека по 23 диады движутся к каждому полюсу).

Телофаза I. В животных клетках происходит деспирализация диад. На короткое время образуется ядерная оболочка и ядро становится интерфазным. У многих растений телофаза I и интерфаза II отсутствуют.

Интерфаза II есть только у животных клеток. Она короткая и в ней не происходит репликация ДНК.

Второе мейотическое деление происходит в двух дочерних клетках, образовавшихся после первого мейотического деления.

Профаза II аналогична профазе митоза: диады спирализуются и укорачиваются, ядерная оболочка растворяется, центриоли расходятся к полюсам клетки, формируются нити веретена деления.

Метафаза II. Диады (23 у человека) выстраиваются по экватору клетки.

Анафаза II. Под влиянием тяги нитей веретена деления происходит расщепление диад на отдельные хромосомы и их движение к полюсам клетки (у человека по 23 отдельных хромосомы движутся к каждому полюсу).

Телофаза II. Происходит деспирализация хромосом. При этом хромосомы перестают быть видимыми в световой микроскоп. Распадаются нити веретена деления. Формируются ядерные оболочки. Телофаза II переходит в третью стадию клеточного цикла – цитокинез, завершающий деление цитоплазмы. Две дочерние клетки, образовавшиеся после первого мейотического деления, разделяются на четыре "внучатых", каждая из которых содержит одинарный гаплоидный набор хромосом (у человека по 23).

Следует отметить противоречие, встречающееся при описании кариокинеза в учебной биологической литературе. Один и тот же объект, а именно, одинарную хромосому называют и хромосомой и хроматидой. После выяснения молекулярной основы хромосом (ДНК) стало ясно, что нормальная хромосома человека – это одинарная хромосома. При описании митоза и мейоза у людей, термин "хроматида" утратил свое историческое значение, как половинка Х-образной хромосомы.

Итогом мейотического деления клетки является формирование гаплоидных клеток, которые по генетической информации не идентичны диплоидной материнской клетке.

Биологический смысл мейоза – пересортировка генетического материала для обеспечения полового размножения и комбинативной изменчивости.

В процессе мейоза формируются 2 из 3 источников комбинативной изменчивости (КИ). В профазу-I формируется первый источник КИ: кроссинговер гомологичных (парных) хромосом – обмен участками хромосом, которые кодируют разные варианты проявления отдельных признаков. В анафазу-I (расхождение тетрад) и анафазу-II (расхождение диад) формируется второй источник КИ: случайный характер расхождения к полюсам клетки хромосом, кодирующих разные варианты проявления отдельных признаков. Третий по времени формирования источник КИ – это слияние гамет при оплодотворении. Мейоз является главной составной частью гаметогенеза.

Гаметогенез – это процесс формирования половых клеток (гамет).

Конкретным воплощением гаметогенеза является сперматогенез у мужчин и овогенез (оогенез) у женщин.

Сперматогенез человека состоит из 4 стадий: размножения, роста, созревания (мейоза), формирования (спермиогенеза).

Все стадии начинаются в период полового созревания (13-15лет) и заканчиваются в климактерическом периоде (50-60 и выше). Сперматогенез происходит в извитых канальцах семенников (яичек). Он регулируется гормонами гипоталамо-гипофизарной системы и половыми гормонами семенников и надпочечников по обычному механизму – отрицательной обратной связи.

  1. Стадия размножения – это митотическое деление диплоидных клеток – сперматогоний.

  2. Стадия роста – это образование больших тетраплоидных сперматоцитов первого порядка после репликации ДНК некоторых сперматогоний.

  3. Стадия созревания (мейоз) – это два последовательных мейотических деления. При первом делении сперматоциты первого порядка (4 набора хромосом) превращается в сперматоциты второго порядка (2 набора хромосом). При втором делении мейоза сперматоциты второго порядка (2 набора хромосом) превращаютсяв гаплоидные (1 набор хромосом) сперматиды.

  4. Стадия формирования (спермиогенез). Сперматиды превращаются в зрелые гаплоидные сперматозоиды. От одной из центриолей образуется жгутик, превращающийся в хвост сперматозоида, а из аппарата Гольджи и гранулярной эндоплазматической сети формируется акросома на головке сперматозоида.

За всю жизнь здоровые мужчины производят миллиарды сперматозоидов (при 1 эякуляции их выбрасывается около 300 – 500 миллионов).

Овогенез (оогенез) у женщин состоит из 3 стадий: размножения, роста, созревания (мейоза).

  1. Стадия размножения – это митотическое деление диплоидных клеток овогоний. В отличие от мужчин, эта стадия начинается еще в эмбриональном периоде и заканчивается до рождения ребенка.

  2. Стадия роста – это образование больших тетраплоидных овоцитов первого порядка после репликации ДНК некоторых овогоний. Овоциты первого порядка являются тетраплоидными клетками, замершими на стадии профазы первого мейотического деления. Они окружены слоем клеток, образующих пузырек – фолликул. У новорожденной девочки имеется около 2 миллионов таких клеток, но до репродуктивного периода сохраняется несколько десятков тысяч. Стадия роста по времени практически совпадает со стадией размножения.

  3. Стадия созревания (мейоз) начинается у девушек с началом маточного цикла в период полового созревания. Этот процесс идет под влиянием гонадотропных и половых гормонов.

Овоцит первого порядка, находится под слоем клеток (в фолликуле яичника). После овуляции (разрыва фолликула) овоцит первого порядка завершает первое мейотическое деление и образует 1 овоцит второго порядка и 1 полярное тельце (или направляющее тельце первого порядка – это клетка, лишённая большей части цитоплазмы, она может разделиться на 2 полярных тельца второго порядка, но не способна к развитию в яйцеклетку).

Овоцит второго порядка имеет сложную внешнюю оболочку. Он начинает второе деление мейоза, но не заканчивает его. Процесс мейоза останавливается на стадии метафазы II. Именно эта стадия называется яйцом или яйцеклеткой. Второе мейотическое деление полностью завершают только несколько яйцеклеток. Если происходит проникновение сперматозоида под оболочку, то второе мейотическое деление завершается. Число беременностей (роды + аборты) совпадает с числом завершенных мейотических делений. В этом случае, под одной оболочкой оказываются 3 набора хромосом (у человека их 69). Один материнский набор хромосом (23 хромосомы) превращается в полярное тельце второго порядка и разрушается, а другой (23 хромосомы) становится женским пронуклеусом и сливается с 23 хромосомами из мужского пронуклеуса. Образуется зигота, в которой остается с 46 хромосом. Возникает новая человеческая жизнь.

У здоровой женщины в течение всего репродуктивного периода происходит созревание нескольких сотен (400 - 450) готовых к оплодотворению яйцеклеток (в среднем по одной один раз в 28 дней).

Оплодотворение.

Время формирования элементов организма до оплодотворения обозначают термином "прогенез". Для человека и высших млекопитающих этот период совпадает с гаметогенезом (сперматогенез и овогенез).

Оплодотворение происходит в процессе полового акта или коитуса. Коитус у людей состоит из нескольких этапов, сопровождающихся изменениями физического и психического состояния партнёров. Половой акт начинает любовная игра (ласки), при которой возникает эрекция (напряжение) и люмбрикация (увлажнение) половых органов. Затем проводится интроекция (введение полового члена во влагалище) и фрикции (периодические толчки). Во время фрикций нарастает поток афферентных импульсов в ЦНС из эрогенных зон. Половое возбуждение достигает "критического" значения. На пике возбуждения у мужчин происходит эякуляция (семяизвержение), сопровождающаяся оргазмом – вершиной полового удовлетворения, который может совпадать с оргазмом у женщин. После оргазма наблюдается спад полового возбуждения - начинается рефрактерный период (невозбудимости).

При эякуляции здоровый мужчина выбрасывает 3-5 мл спермы, содержащей несколько сотен миллионов сперматозоидов (менее 20 миллионов сперматозоидов в 1 мл спермы - может стать причиной мужского бесплодия). Из влагалища сперматозоиды через канал шейки матки попадают в матку и далее в маточные трубы. В верхней трети маточной трубы происходит встреча яйцеклетки и сперматозоидов. Для успешного оплодотворения необходимо совместное действие многих сперматозоидов. Своими гидролитическими ферментами они растворяют элементы оболочки яйцеклетки. Особенно активно разрушают оболочку яйцеклетки сперматозоиды – "камикадзе". Они гибнут быстрее других из-за более "нежной" мембраны их головки, поэтому их ферменты активнее разрушают оболочки яйцеклетки. Наконец, один сперматозоид первым проникает под оболочку яйцеклетки. После этого оболочка яйцеклетки быстро уплотняется и другие сперматозоиды исключаются из процесса оплодотворения. Внедрение сперматозоида под оболочку яйцеклетки стимулирует завершение второго мейотического деления и под одной оболочкой оказывается три набора хромосом. Один женский пронуклеус сливается с ядром сперматозоида, а второй набор хромосом яйцеклетки лизируется.

Оплодотворение - соединение сперматозоида с яйцом приводит к образованию зиготы, начинает новую жизнь и её первый период – внутриутробное развитие.

Внутриутробное развитие и его критические периоды.

Внутриутробный период (период беременности) условно делят на эмбриональный (зародышевый) период от оплодотворения до 9 недель и фетальный (плодный) период от 9 недель до рождения. Иногда, первые дни эмбрионального периода называют "начальным" периодом.

Первое состояние человеческого эмбриона – это одна клетка - зигота. Далее следует период дробления (митотическое деление без роста размеров зародыша). При этом используются строительные и энергетические вещества, накопленные яйцеклеткой в период овогенеза. В процессе дробления зародыш продвигается по маточной трубе к матке.

Через несколько делений формируется морула - группа клеток бластомеров. Их делят на трофобласты и эмбриобласты. Трофобласты в последующем будут превращаться в провизорные органы зародыша, обеспечивающие его питание, выделение, защиту и дыхание. Эмбриобласты будут превращаться в различные части тела ребенка.

Следующее состояние зародыша называют бластулой. Бластула (бластоциста) - это сферический однослойный зародыш с полостью (бластоцель). Затем, начинается гаструляция – образование многослойного (у человека трехслойного зародыша) путем сложных перемещений (иммиграция) и делений (деляминация) зародышевых клеток. Гаструляция сопровождается имплантацией (внедрением) зародыша в стенку матки на 7-й день после оплодотворения. При гаструляции формируется 3 зародышевых листка.

Наружный – эктодерма (даст кожу и нервную систему).

Средний – мезодерма (даст мышцы, кости, сосуды).

Внутренний – энтодерма (даст главные элементы пищеварительной и дыхательной систем).

Развитие зародыша после гаструляции называют органогенезом, при котором продолжается дифференцировка систем и органов. В основе дифференцировки (появления отличий в строении и функциях) лежит эмбриональная индукция. ДНК всех клеток остается идентичной (следствие митотического деления), но развертывание системы белков-репрессоров и молекул-индукторов включает и (или) выключает разные гены в разных эмбриональных клетках. Индукторы и репрессоры работают уже с момента оплодотворения.

Одновременно происходит формирование из трофобластов провизорных органов (оболочек) зародыша: хориона, аллантоиса, амниона, желточного мешка.

Хорион – наружная оболочка зародыша выполняет защитную и трофическую функцию. Ворсинки хориона врастают в стенку матки и всасывают питательные вещества из слизистой оболочки, а затем из крови матери.

Аллантоис – собирает отработанные продукты метаболизма, обеспечивая функцию выделения. Впоследствии (через 3 недели после оплодотворения) слияние аллантоиса, хориона и сосудов мезодермы зародыша даст основу нового органа - плаценты с пуповиной.

Амнион – оболочка, наполненная амниотической жидкостью (околоплодными водами), окружает тело зародыша, защищая его от механических, термических и других повреждений.

Желточный мешок человеческого зародыша содержит незначительное количество питательного и строительного материала, но имеет важное значение в период до формирования плаценты.

Органогенез, как процесс формирования органов продолжается и во втором периоде внутриутробного развития - фетальном.

Фетальный, или плодный период условно отсчитывают с девятой недели после оплодотворения. В это время интенсивно растут и развиваются органы и системы плода. К сроку окончания нормальной беременности 9 месяцев (280 суток) женщина должна прибавить в массе на 7-9 кг. Эта прибавка складывается из массы ребенка (3,5 кг), плаценты (1 кг), околоплодных вод (1,5-2кг), гипертрофированной матки (1 кг) и подкожной жировой клетчатки (1-2 кг).

Плацентарный барьер. Биологический смысл "плацентарного барьера" в том, чтобы отделять два генетически чужеродных организма. В течение беременности на эмбрион и плод происходит воздействие факторов среды, опосредованное организмом матери. Плацента формируется не только из клеток зародыша. В плаценте, выделяют материнские части, например, кровяные лакуны, в которые погружены ворсинки плодной части плаценты.

Плацентарный барьер отделяет форменные элементы крови матери и плода, препятствует проникновению некоторых микроорганизмов и токсических веществ. Одновременно через плацентарный барьер должны проходить питательные вещества, кислород, а в обратном направлении продукты выделения плода. Эти обстоятельства дают возможность проникновения опасных веществ в организм ребенка.

Во время внутриутробного развития выделяют самые опасные моменты, или критические периоды беременности. Максимальная чувствительность плода бывает в период имплантации (срок 1 неделя), плацентации (срок 3-6 недели) и в течение родов, завершающих внутриутробное развитие. Действие неблагоприятных факторов в эти периоды легко приводит к нарушению внутриутробного развития и появлению уродств (тератогенные эффекты). В период беременности резко сокращаются показания к приему лекарств беременной женщиной, что связано с возможностью тератогенного и прямого токсического (передозировка) действия на плод.

"Талидомидовая катастрофа" – пример игнорирования возможности тератогенного действия лекарства. Она разыгралась из-за недостаточной проверки на животных нового препарата талидомида, предназначенного для облегчения неблагоприятных симптомов при беременности у женщин. У грызунов (мыши и крысы) талидомид не вызывал изменений в потомстве и был рекомендован для клинического использования у людей. В результате, во всем мире родилось несколько тысяч детей с недоразвитыми конечностями (фокомелия).

Дальнейшие исследования на кроликах и обезьянах показали аналогичные дефекты потомства. С тех пор, подобные фармакологические исследования проводят не менее, чем не двух видах млекопитающих, один из которых не грызуны.

Таким образом, беременность можно считать одним большим критическим периодом.

Границей между внутриутробным периодом и следующим периодом индивидуального развития являются роды.

Роды.

В акушерской практике выделяют антенатальный (дородовый), натальный (родовой) и постнатальный (послеродовой) периоды. Сами роды (натальный период) делят на 3 периода: раскрытия, рождение плода и рождение плаценты.

Период раскрытия (родовых схваток) – раскрытие шейки матки до размеров сопоставимых с размерами головки плода. Процесс стимулируется гормоном гипоталамуса – окситоцином. В этот период разрывается амниотическая оболочка и отходят околоплодные воды. При патологическом течении этого периода и преждевременной отслойке плаценты возможна смерть плода от асфиксии (нарушения доставки кислорода).

Период рождения (изгнания) плода – ребенок проходит через родовые пути матери. При патологическом течении, в этот критический период возможны родовые травмы плода и разрывы промежности у роженицы.

Рождение плаценты - это период отслойки плаценты от стенки матки и ее выход вместе с пуповиной из родовых путей. После этого происходит резкое сокращение матки и сдавливание её сосудов. При нормальном течении родов кровопотеря не превышает 200-250 мл крови. При патологии этого периода и атонии матки возможна тяжелая кровопотеря. Кроме того, повышается риск попадания микроорганизмов в кровь матери и развитие тяжелого инфекционного осложнения – сепсиса (заражения крови).

Индивидуальное развитие после рождения.

Индивидуальное развитие после рождения и особенности действия лекарств в разные периоды жизни.

Жизнь человека можно разделить на 7 периодов: новорожденности, грудной, детский, пубертатный (подростковый), репродуктивный, климактерический, инволюционный.

Первый период жизни человека после рождения называют периодом новорожденности. В этот период происходит адаптация ребенка к новым условиям среды обитания. Максимальная смертность наблюдается именно в этот период. Изменение способа дыхания (плацента – легкие), питания (плацента – система пищеварения) и выделения (плацента – почки) приводит к серьезному напряжению организма ребенка. Переход из амниотической жидкости к обычным условиям земного тяготения называют гравитационным ударом. Условно период новорожденности продолжается 1 месяц, но практически его можно считать завершенным после заживления пупочной ранки.

Второй период жизни называют грудным периодом, хотя реально грудное вскармливание может отсутствовать. Этот период считают завершенным к 12 месяцам. Первый год жизни ребенок продолжает быстро развиваться и наращивать массу тела. Продолжают формироваться гистогематические барьеры между кровью и тканями. Незрелость этих барьеров требует особого подхода к назначению и дозированию лекарств у детей.

Нельзя механически пересчитывать дозу для ребенка на килограмм массы от дозы взрослого. При одинаковых с взрослым концентрациях барбитуратов в крови могут возникнуть тяжелые признаки передозировки у ребенка. Барбитураты легко проникают через незрелый гематоэнцефалический барьер (барьер между кровью и головным мозгом – ГЭБ) детей и трудно проникают через зрелый ГЭБ у взрослых. Кроме того, у детей не сформированы барьеры между кровью и пищеварительным каналом, неполноценно работают печень, почки, повышено всасывание веществ из кишечника в кровь, что усугубляет эффекты передозировки. Данные обстоятельства требуют снижения дозировки значительной группы препаратов после пересчета на 1 кг массы ребенка. Важной особенностью грудного периода является постепенное снижение пассивного врожденного иммунитета (антител матери), полученного через плацентарный барьер во время внутриутробного развития и выработка собственного активного иммунитета. В конце грудного периода наблюдается "иммунная яма". Материнские антитела уже разрушились, собственная защита еще не окрепла. У детей учащаются инфекции, от которых они ранее были защищены материнскими антителами.

Третий период жизни от года до 12-14 лет называется детским. В этот период происходит, преимущественно, количественное увеличение функционирующих структур организма. С ростом массы тела и созреванием барьеров постепенно повышается дозировка лекарств. Усиливается собственная защита от инфекций.

Четвертый период – период полового созревания (пубертатный или подростковый) начинается в 12-13 лет. У девочек на 1-2 года раньше, чем у мальчиков. В женском организме идет становление маточного цикла и периодических изменений гормонального фона. Начинаются первые менструации и созревают первые яйцеклетки. У мальчиков перестройка организма связана с началом сперматогенеза. Пубертатный период переходит в репродуктивный.

Пятый период жизни репродуктивный или период половой зрелости. У женщин стабилизируется маточный цикл, который контролируется системой гипоталамус (рилизинг-факторы) - гипофиз (гонадотропные гормоны) - яичники (эстрогены и гестагены).

В первую половину маточного цикла в яичниках, под влиянием рилизинг-факторов гипоталамуса для фолликулостимулирующего (ФСГ) и лютеинизирующего (ЛГ) гормонов гипофиза и эстрогенов яичников, происходит созревание фолликулов, содержащих яйцеклетку. Одновременно, растет новая внутренняя оболочка матки. В середине маточного цикла (13-14 день) происходит овуляция – выход яйцеклетки из лопнувшего фолликула и её перемещение по маточной трубе к месту возможного оплодотворения. В это время, в гипоталамусе функционально преобладает выработка рилизинг-факторов для другого гипофизарного гормона пролактина (ПЛ). В яичнике лопнувший фолликул превращается в желтое тело, которое начинает продуцировать гормон прогестерон (группа гестагенов). Под влиянием прогестерона матка подготавливается к имплантации зародыша. Прогестерон называют гормоном беременности. В начале беременности его вырабатывает желтое тело яичника.

Если происходит оплодотворение, то циклические изменения прекращаются на период беременности. Они восстанавливаются через несколько недель после родов.

Если оплодотворения не произошло, то в конце маточного цикла происходит переключение системы гипоталамус-гипофиз-яичники на продукцию гормонов в исходных соотношениях. Отторжение слизистой оболочки матки, проявляется менструальным маточным кровотечением. Начинается новый маточный цикл.

Этому может предшествовать предменструальный синдром (ПМС). Он часто сопровождается реакциями нервной вегетативной системы (сердцебиения, потливость), и преходящими расстройствами психики (раздражительность, плаксивость).

Применение лекарств гормонального характера у женщин может значительно повлиять на репродуктивную функцию. Гормональные контрацептивы вызывают нарушение последовательности событий маточного цикла, вызывая искусственное бесплодие. Те же средства, назначаемые в другие дни маточного цикла и при беременности, наоборот, являются средствами лечения бесплодия.

Возможность тератогенного действия на развивающегося ребенка резко сокращает показания к применению большой группы лекарственных средств беременной женщиной.

В следующий после беременности период – кормления грудью (лактация) происходит увеличение расхода белка, витаминов и минеральных веществ, что повышает их дозировки для женщины. Прием других лекарств производят с учетом того, что при грудном вскармливании сохраняется угроза отравления ребенка лекарствами из молока кормящей матери, следовательно, сохраняются широкие ограничения на лечение женщины и в это время. После окончания лактации ограничения снимаются.

Репродуктивный период у мужчин не имеет таких жестких ограничений по использованию лекарственных средств, как беременность и лактация у женщин. Однако прием лекарств и отравления (в т.ч. алкоголем и наркотиками) в период сперматогенеза может повлиять на качество сперматозоидов. По этой причине, семье, которая решила завести ребенка, следует исключить или ограничить прием любых ксенобиотиков, потенциально влияющих на гаметогенез.

Шестой период жизни климактерический - период полового угасания.

Репродуктивная функция у женщин затухает в 45-55 лет. Климакс связан с прекращением регулярной перестройки гормонального фона и прекращением менструаций (менопауза). Процесс угасания может прерываться, овогенез ненадолго восстанавливается. Климакс у женщин часто сопровождается реакциями, похожими на предменструальный синдром, растянутый во времени и манифестацией хронических болезней.

Климакс у мужчин протекает позже и мягче, но также может сопровождаться обострением хронических и появлением новых болезней. Быстрое снижение уровня андрогенов может сопровождаться нарушением функций предстательной железы (простатиты, гиперплазии) с последующими проблемами при мочеиспускании и мужской "дееспособностью".

Седьмой и последний период жизни называют периодом общего угасания или инволюционным. Этот период делят на 3 части: 60-75 лет пожилой возраст, 75-90 лет старческий возраст, 90 лет и более - период долгожительства. Старение сопровождается неравномерным ухудшением функций организма и проявлением места наименьшего сопротивления (locus minoris resistentia) - конкретной причины смерти. Прежде всего, утрачиваются функции сердца и сосудов, снижается иммунитет, повышая риск опухолевого перерождения тканей и восприимчивости к патогенным микроорганизмам. Важной особенностью назначения лекарств во все периоды жизни, а в период инволюции особенно, является индивидуальный подход к людям с заболеваниями почек и печени, требующий снижения дозировки.

Причины старения. Существует три группы гипотез старения.

1. Теории износа.

2. Теории генетической детерминанты (предопределенности).

3. Комбинированные теории (износ генетической информации).

Так как единой точки зрения на причину старения нет, то правильнее называть эти теории гипотезами.

Гипотезы износа связывают с разрушением жизненно важных органов - нервной системы, сердца, сосудов головного мозга и др. Данные системы не имеют возможности для полноценной физиологической регенерации. Их утрата приводит к несовместимым с жизнью последствиям. Гипотезы генетической детерминанты предполагают наличие гипотетических генов старения. Эти гены начинают активироваться в клетках организма после определенного числа их делений и синтезировать белки-репрессоры жизни, подавляющие жизненно-важные процессы метаболизма. Старение рассматривается как событие, обеспечивающее смерть, а смерть как биологическая необходимость для смены поколений, проявления комбинативной изменчивости и увеличения выживаемости вида.

Комбинированные гипотезы - гипотезы износа генетической информации предполагают потерю (разрушение) функционально значимой части молекулы ДНК в процессе её периодической репликации. Эта гипотеза предполагает наличие в ДНК цепочки азотистых оснований - теломеров перед началом информационно-значимой части ДНК. Синтез значимой части ДНК находится под контролем фермента ДНК-полимеразы, а синтез теломеров под контролем фермента теломеразы (см. рис. 1).

Рисунок 1. Положение теломеров и информационно-значимой части в одной цепочке молекулы ДНК.

"теломеры" информационно-значимая ДНК

ААААААААААТАЦЦГТАЦТТТГТТГЦЦЦГГТТГГЦ

При репликации ДНК нуклеотиды теломеров могут быть утрачены (концевая недрепликация). Но это не отражается на работе клетки, пока не утрачены нуклеотиды информационно-значимой части ДНК. После многократных делений могут быть утрачены все нуклеотиды-теломеры и начинают теряться нуклеотиды информационно-значимой части ДНК. ДНК теряет смысл, как и молекулы собираемых белков клетки. Без нормальных белков происходит нарушение функций клетки.

Это предположение доказывают эксперименты по искусственному внедрению гена теломеразы в клеточную культуру, которое продлевало её жизнь.

Возможно, что раньше других изнашивается (теряет теломеры) ДНК генов, кодирующих белки-ферменты для системы антиоксидантной защиты мембран от перекисного окисления и гены для обеспечения процесса метилирования ДНК.

При нарушении синтеза белков-ферментов антиоксидантной защиты, происходит резкое увеличение числа свободных радикалов и интенсификация перекисного окисления липидов клеточных мембран. Считается, что назначение комплекса антиоксидантов замедляет процесс старения.

Таким образом, для предотвращения процесса старения необходимо обеспечить нормальную репликацию ДНК. После определенного количества делений происходит нарушение генов контролирующих белки-ферменты (антиоксидантной защиты, нормального метилирования ДНК и др.), что резко ускоряет процесс старения.

Регенерация.

В течение всей жизни человек активно сопротивляется старению. Регенерация - это замещение утраченных структур. Одновременно, это один из способов противостоять старению и смерти.

Виды регенерации и восстановление функций. Регенерация бывает физиологической и репаративной.

Под физиологической регенерацией понимают нормальное самообновление тканей без экстраординарного воздействия. Примером физиологической регенерации может служить постоянное восстановление клеток эпителия кожи, желудка, двенадцатиперстной кишки и других органов.

По интенсивности физиологической регенерации клетки можно разделить на лабильные, стабильные и статические.

Лабильные клетки регенерируют быстрее и легче всех других. Это – клетки эпителия пищеварительного канала, эпидермиса кожи, красного костного мозга.

Стабильные клетки регенерируют медленнее лабильных, но при повреждении скорость их деления может резко возрастать. К стабильным (по регенераторной способности) относят клетки костей, печени, поджелудочной железы, слюнных желез и др. Различия между регенераторными способностями лабильных и стабильных клеток скорее количественные, чем качественные.

Статические клетки, как принято считать, не делятся. Это клетки нервной и мышечной ткани.

Репаративная регенерация – это регенерация после повреждения, вызванного экстраординарным воздействием (болезнь, травма).

Репаративная регенерация бывает полной и неполной.

Полной репаративной регенерацией называют восстановление ткани такими же клетками, которые были до повреждения. Например, регенерация клеток крови после кровотечения. К полной репаративной регенерации способны при благоприятных условиях клетки эпителиальной и соединительной тканей.

При неполной репаративной регенерации, тканевой дефект замещается клетками, отличающимися от клеток, которые были до повреждения. Например, после инфаркта миокарда (некроза сердечной мышцы) мертвые мышечные клетки сердца (миокардиоциты) замещаются клетками и волокнами соединительной ткани, формирующими рубец.

К неполной репаративной регенерации способны все виды тканей.

Восстановление функции поврежденной ткани, как правило, происходит при полной репаративной регенерации. Однако восстановление функции может быть и в тканях, неспособных к полной репаративной регенерации (нервной и мышечной).

Восстановление функций нервной ткани связывают с двумя механизмами. Если тело нервной клетки сохранено, то функции поврежденных периферических нервов могут восстанавливаться за счет регенерации отростков (прорастание аксонов). Например, восстановление движения пальца руки после его травматической ампутации и операции по приживлению. Второй механизм, связан с тем, что функцию погибших нервных клеток головного мозга могут взять на себя соседние клетки. Например, восстановление движений и речи после инсульта головного мозга.

Восстановление функций мышечной ткани также связывают с двумя механизмами. Внутриклеточная гиперплазия - это увеличение числа органоидов и размеров клеток. Так, после инфаркта миокарда сила сердечных сокращений постепенно восстанавливается из-за увеличения числа миофибрилл и митохондрий в клетках, оставшихся в живых. Второй механизм связывают с клетками - сателлитами, которые в норме находятся в недоразвитом состоянии и не сокращаются. После гибели мышцы, их развитие индуцируется. Они начинают выполнять сократительную функцию.

Смерть - это процесс прекращения жизни. Судебно-медицинская классификация смерти включает понятия о категории, роде, виде смерти.

Классификация по категории смерти: насильственная и ненасильственная (смерть от болезни).

Классификация по роду насильственной смерти: убийство, самоубийство, несчастный случай;

Классификация по роду ненасильственной смерти: типичная, внезапная, скоропостижная.

Типичной можно назвать смерть после тяжелой прогрессирующей болезни. Например, смерть ракового больного на фоне истощения и интоксикации организма.

Внезапная смерть регистрируется у больного человека, который не имел признаков опасного для жизни развития заболевания. Например, больной (62 года) со стабильной стенокардией напряжения, без признаков прогрессирования болезни, неожиданно умирает от инфаркта миокарда.

Скоропостижная смерть - неожиданная, при кажущемся здоровье. Например, человек без жалоб неожиданно умирает от болевого шока. На вскрытии обнаруживают прободение "немой" язвы желудка в брюшную полость.

Виды смерти: от физических, химических и биологических факторов.

На первом месте по причинам смерти людей сердечно-сосудистые заболевания, на втором травмы (в России), далее на третьем опухоли и другие болезни.

Литература:

основная:

  1. Антропология. Хрестоматия. Учебное пособие для студентов факультетов психологии вузов. М., 1977.

  2. Бунак В.В. Род Ноmо, его возникновение и последующая эволюция. М., 1980.

  3. Дерябин В.Е. Антропология. Учебное пособие для психологов. М., 1995.

  4. Рогинский Я.Я., Левин М.Г. Антропология. М., 1978.

  5. Тегако Л.И., Саливон И.И. Основы современной антропологии. Минск, 1989.

  6. Уошберн Ш.Л. Эволюция человека/ Эволюция. М., 1981.

  7. Харитонов В.М., Ожигова А.П., Година Е.З. и др. Антропология. М., 2003.

  8. Хрисанфова Е.Н., Перевозчиков И.В. Антропология. 2-е изд. М., 1999.

  9. Хрисанфова Е.Н., Перевозчиков И.В. Антропология. М.,2000.

  10. Чебоксаров Н.Н., Чебоксарова И.А. Расы, народы, культуры. М., 1985.

дополнительная:

  1. Алексеева Т.И. Адаптация человека в различных экологических нишах Земли. М., 1998.

  2. Алексеева Т.И. Географическая среда и биология человека. М., 1977.

  3. Рогинский Я.Я. Проблемы антропогенеза. М., 1977.

  4. Уильямс Р. Биохимическая индивидуальность. Основы генетотрофной концепции. М., 1960.