Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

термех / Механика бакалавр 0 вар / Механика_0_14_ч_2

.doc
Скачиваний:
88
Добавлен:
17.04.2015
Размер:
4.48 Mб
Скачать

Ответ: 54

6.40. Тело массой m = 18,4 кг падает по вертикали, сила сопротивления воздуха R = 0,05ּv2 (Н). (Ускорение свободного падения в вакууме принять равным g = 9,8 м/с2.) Определить максимальную скорость падения тела (м/с).

Ответ: 60

6.41. Материальная точка движется по окружности радиуса R = 25 м согласно уравнению s = 0,5ּt2 (s – в метрах, t – в секундах). Известно, что через промежуток времени t = 5 сек. от начала движения модуль действующей на точку силы равен F = (Н). Определить массу этой точки. m = … (кг).

Ответ: 1

6.42. Материальная точка массы m = 1 кг движется относительно инерциальной системы отсчёта под действием двух постоянных сил: и (Н). Начальная скорость точки равна нулю. Определить пройденный путь за время 1 сек. то начала движения.

Ответ: 2ּ

6.43. Материальная точка массы m = 1 кг движется из состояния покоя под действием силы = (t2 - 3ּt + 2)ּ вдоль оси Ох (F – в ньютонах; t – в секундах). Определить модуль наименьшего ускорения точки; |аmin| =… (м/с2).

Ответ: 0,25

6.44. Груз массой m может скользить без трения по стержню, укреплённому перпендикулярно к оси ОА (см. рис.) центробежной машины. Груз соединяют с осью пружиной с коэффициентом жёсткости с. При какой угловой скорости ω пружина растянется на 50% первоначальной длины?

Ответ:

6.45. С какой наибольшей скоростью может двигаться автомобиль на повороте радиусом закругления R = 100 м, чтобы не «занесло», если коэффициент трения скольжения шин о дорогу k = 0,4? (Ускорение свободного падения в вакууме принять равным g = 10 м/с2; результат вычисления округлить до ближайшего целого числа.)

v = … (м/с).

Ответ: 20

6.46. Люстра массой m = 80 кг подвешена к потолку на металлической цепи, длина которой l = 5 м. Определить высоту h (м), на которую можно отклонить люстру, чтобы при последующих качаниях цепь не оборвалась? Известно, что разрыв цепи наступает при натяжении Т = 1960 Н (Ускорение свободного падения принять равным g = 9,8 м/с2.)

h < … (м).

Ответ: 3,75

6.47. Найти период вращения маятника, совершающего круговые движения в горизонтальной плоскости. Длина нити l. Угол, образуемый нитью с вертикалью, α (см. рис.).

Отметьте правильный ответ. (g ускорение свободного падения.)

Ответ:

6.48. На повороте дороги радиусом R = 75 м равномерно движется автомобиль. Центр тяжести находится на высоте h = 1 м, ширина следа автомобиля а = 1,5 м. Определить скорость vкр, при которой автомобиль может опрокинуться. В поперечном направлении автомобиль не скользит. (Ускорение свободного падения в вакууме принять равным g = 9,8 м/с2; результат вычисления округлить до ближайшего целого числа.)

vкр = … (м/с).

Ответ: 23

6.49. Внутри конической поверхности обращается шарик по окружности радиусом R (см. рис.). Угол при вершине конуса 2α. (g – ускорение свободного падения.) Определить период обращения шарика по окружности.

Отметьте правильный ответ.

Ответ:

6.50. Два груза одновременно начинают движение из состояния покоя с высоты h над горизонтальной поверхностью пола, причём груз соскальзывает без трения по плоскости, составляющей угол α = 30о с горизонтом, а второй свободно падает. Определить отношение времён t1/t2 при достижении ими поверхности пола.

t1/t2 = …

Ответ: 2

6.51. Космонавты, высадившиеся на поверхности Марса, измерили период обращения конического маятника, представляющего собой небольшое тело, прикреплённое к нити и движущееся по окружности в горизонтальной плоскости с постоянной скоростью (см. рис.). Период оказался равным Т = 3,03 сек. Длина нити l = 1 м. Угол создаваемый нитью с вертикалью, α = 30о. Найдите по этим данным ускорение свободного падения на Марсе g (м/с2).

Ответ: 3,72

6.52. Искусственный спутник Земли, обращающийся по круговой орбите, переводится на другую круговую орбиту, радиус которой в 2,56 раза больше радиуса исходной орбиты.

Во сколько раз уменьшается скорость движения спутника по орбите? v1/v2 = …

Ответ: 1,6

6.53. Матер. точка массы m = 1 кг движется вдоль горизонтальной оси Ox под действием силы сопротивления, пропорциональной скорости v (Fсопр = kּv, k = 0,2 Нּсек/м). Какое расстояние s пройдёт матер. точка, прежде чем её скорость уменьшится в 2 раза? Начальная скорость точки равна v0 = 12 м/с. s = … (м).

Ответ: 30

6.54. Матер. точка массы m = 1 кг движется вдоль горизонтальной оси Ox под действием силы Fх = (1 – x) (Н). Начальная скорость v0 = 1 м/с. Начальное положение точки принять за начало отсчёта. Определить уравнение движения матер. точки.

Отметьте правильный ответ.

Ответ: x = sin(t) – cos (t) + 1

6.55. Матер. точка массы m = 1 кг движется вдоль горизонтальной оси Ox под действием силы сопротивления, пропорциональной скорости v (Fсопр = kּv, k = 0,05 Нּсек/м). За какое время t1 от начала движения скорость точки уменьшится в 2 раза? Начальная скорость точки равна v0 = 12 м/с. (Результат вычисления округлить до целого числа.) Отметьте правильный ответ.

Ответ: 14

6.56. Матер. точка массы m = 1 кг с начальной скоростью v0 = 12 м/с движется вдоль горизонтальной оси Ox под действием силы сопротивления, пропорциональной скорости v (Fсопр = kּv, k = 0,2 Нּсек/м). Какое расстояние s пройдёт матер. точка до полной остановки? s = … (м).

Ответ: 60

6.57. Матер. точка массы m = 1 кг движется из начала координат вдоль горизонтальной оси Ох, имея начальную скорость v0 = 2 м/с и испытывая силу сопротивления движению, пропорциональную квадрату скорости: (Н), где k = 0,1 Нּс/м. Определить время от начала движения t1 (сек.), на которое скорость матер. точки уменьшится в два раза. t1 = … (сек).

Ответ: 5,0

6.58. Матер. точка массы m = 1 кг движется вдоль горизонтальной оси Ox под действием силы Fх = 3ּ(Н). Начальная скорость точки равна v0 = 1 м/с. Определить расстояние s (м), на которое переместится точка за время 2 сек. (Результат вычисления округлить до целого числа.)

Ответ: 47

6.59. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от центра О и направленной к этому центру , где - радиус-вектор точки, c - коэффициент пропорциональности. В начальный момент матер. точка находилась в точке М0 с координатами х = х0 и у = 0 и ей сообщили начальную скорость 0, направленную параллельно оси Oy т.е. v0x = 0, v0y = v0. Найти уравнение траектории матер. точки.

Ответ: + ּ = 1

6.60.Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы отталкивания от неподвижного центра О, изменяющейся по закону пропорциональной смещению точки от центра О и направленной к этому центру = k2ּmּ, где - радиус-вектор точки. В начальный момент точка находилась в М0 с координатами х = х0 и у = 0 и ей сообщили начальную скорость 0, направленную параллельно оси Oy т.е. v0x = 0, v0y = v0. Найти уравнение траектории точки.

Ответ: ּ = 1

6.61. Матер. точка массы m движется с начальной скоростью v0 = 1 м/с в среде с сопротивлением. Сила сопротивления пропорциональна кубичному корню скорости матер. точки и по величине равна kּ, k = 0,1ּm – коэффициент сопротивления. Определить расстояние s, которое пройдёт матер. точка до остановки; s = … (м).

Ответ: 6

6.62. Матер. точка массы m движется с начальной скоростью v0 = 1 м/с в среде с сопротивлением. Сила сопротивления пропорциональна кубичному корню скорости матер. точки и по величине равна kּ, k = 0,1ּm – коэффициент сопротивления. Определить время t1, за которое пройдёт матер. точка до остановки; t1 = … (сек.).

Ответ: 15

6.63. Два геометрически равных и однородных шара сделаны из различных материалов – 1) из железа и 2) керамики. Плотности материалов соответственно: железа ρ1 = 7,874ּ103 кг/м3, керамики ρ2 = 1,960ּ103 кг/м3. Оба шара падают в воздухе. Сопротивление среды пропорционально квадрату скорости (R = kּv2). Определить отношение максимальных скоростей шаров. (Результат вычисления округлить до первого знака после запятой включительно.)

v1max / v2max = …

Ответ: 2,0

Тема 7. Общие теоремы динамики (теорема об изменении количества движения; теорема об изменении кинетической энергии; вычисление работы; Потенциальное силовое поле. Работа потенциальной силы).

Колебательное движение

7.1. Пружину с жёсткостью 140 Н/м сжали до длины 0,1 м и отпустили. Работа силы упругости при восстановлении пружины равно … Дж, если длина недеформированной пружины равна 0,2 м.

Ответ: 0,7

7.2. Материальная точка массой m = 0,5 кг брошена с поверхности Земли с начальной скоростью v0 = 25 м/с и в положении М имеет скорость v = 15 м/с. Определить работу силы тяжести (Дж) при перемещении точки из положения М0 в положение М.

Ответ: – 100

7.3. Груз М весом Р = 20 Н, прикреплённый к невесомой нити длиной l = ОМ = 90 см, начинает двигаться из состояния покоя. Определить: 1) работу силы тяжести А(Р) на перемещении М1М2; 2) скорость v груза М, когда он займёт положение М2. Принять g = 10 м/с2.

1)= … (Дж), 2) = … (м/с).

Ответы: 9*3

7.4. Груз М весом Р подвешен на невесомой нерастяжимой нити длиной l. В начальный момент времени груз находился в положении М1.

Определить: 1) работу силы тяжести А(Р) на перемещении груза М1М2; 2) какую минимальную скорость v1 необходимо сообщить грузу, чтобы он достиг положения М2. (Начальный угол наклона стержня 30о)

Ответы: 0,5*1

7.5. Матер. точка массы m = 2 кг перемещается в вертикальной плоскости Оху. Определить работу АОМ (Дж) силы тяжести Р = mּg при перемещении матер. точки по дуге OM полуокружности радиуса R = 10 м (см. рис.). Ускорение свободного падения принять равным g = 9,8 м/с2. Результат вычисления округлить до ближайшего целого числа. АОМ = … (Дж)

Ответ: – 392

7.6. Матер. точка массы m = 2 кг перемещается в вертикальной плоскости Оху. Определить работу АОМ (Дж) силы тяжести Р = mּg при перемещении матер. точки по дуге OM окружности радиуса R = 10 м (см. рис.). Ускорение свободного падения принять равным g = 9,8 м/с2. Результат вычисления округлить до ближайшего целого числа. АОМ = … (Дж)

Ответ: – 196

7.7. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А12 силы при перемещении матер. точки из точки М1 в точку М2 (см. рис.); а = 8 см.

А12 = … (Дж).

Ответ: 6,4

7.8. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А12 силы при перемещении матер. точки из точки М1 в точку М2 (см. рис.); а = 10 см.

А12 = … (Дж).

Ответ: – 10

7.9. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы притяжения = –/r3 к силовому центру О, убывающей по величине обратно пропорционально квадрату расстояния от точки до силового центра О, |F| = k/r2, k = 200 (Н/м2). Вычислить работу А12 силы при перемещении матер. точки из точки М1 в точку М2 (см. рис.); M2М1 = a = 30 м, ОМ2 = b = 40 м.

А12 = … (Дж).

Ответ: 1

7.10. Матер. точка массы m движется по окружности радиуса r в поле центральной силы. Сила притяжения, убывающая обратно пропорционально квадрату расстояния, по модулю равна F(r) = , где k = const. (Центр окружности совпадает с силовым центром.) Определить значение скорости v точки при следующих числовых данных параметров: k = 16 м3/сек2 и r = 4 м. v = … (м/с).

Ответ: 2

7.11. Матер. точка массы m движется по окружности радиуса r в поле центральной силы притяжения. Сила притяжения по модулю равна F(r) = cּr, где c = const. (Центр окружности совпадает с силовым центром.) Определить значение скорости v точки при следующих числовых данных параметров: m = 0,25 (кг) , c = 100 (Н/м) и r = 0,2 (м).

v = … (м/с).

Ответ: 4

7.12. Матер. точка массы m движется по окружности радиуса r под действием центральной силы притяжения , постоянной по модулю (|| = F = const), действующей в области 0,01 м < r < 2 м. (Центр окружности совпадает с силовым центром.) Определить значение скорости v (м/с) точки при следующих числовых данных параметров: F = 1 (Н), m = 0,25 (кг), r = 1 (м). v = … (м/с).

Ответ: 2.

7.13. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 80 Н/см. Вычислить работу А12 силы при перемещении матер. точки из точки М в точку О (см. рис.); а = 9 см, b = 12 см. АМО = … (Дж).

Ответ: 90

7.14. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 80 Н/см. Вычислить работу А12 силы при перемещении матер. точки из точки О в точку М (см. рис.); а = 9 см, b = 12 см. АОМ = … (Дж).

Ответ: – 90

7.15. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 80 Н/см. Вычислить работу А12 силы при перемещении матер. точки из точки М1 в точку М2 (см. рис.); ОМ1 = b = 12 см, OM2 = a = 9 см. (Числовой результат определить с точностью до первого знака после запятой включительно.) А12 = … (Дж).

Ответ: 25,2

7.16. Искусственный спутник Земли движется по круговой орбите на высоте от поверхности Земли h, равной половине радиуса Земли (h = 0,5ּR). Первая космическая скорость равна vкосм1 = 7910 (м/с). Определить скорость v (м/с) спутника на обозначенной орбите. v = … (м/с).

Ответ: 6459

7.17. На рис. изображена штанга, которая может вращаться вокруг горизонтальной оси шарнира О. Плечи штанги l1 = 30 см и l2 = 70 см. На концах штанги закреплены точечные грузы с массами m1 = 8 кг и m2 = 4 кг. Штанга совершает поворот вокруг оси О в вертикальной плоскости на угол 90о по часовой стрелке.

Вычислить работу силы тяжести при этом повороте. Массой штанги пренебречь. Ускорение свободного падения принять равным g = 9,8 м/с2.

А = … (Дж). (Результат вычисления округлить до первого знака после запятой включительно.)

Ответ: 3,9

7.18. На рис. изображена штанга, которая может вращаться вокруг горизонтальной оси шарнира О. Плечи штанги l1 = 40 см и l2 = 70 см. На концах штанги закреплены точечные грузы с массами m1 = 7 кг и m2 = 4 кг. Штанга совершает поворот вокруг оси О в вертикальной плоскости на угол 90о против часовой стрелке.

Вычислить работу силы тяжести при этом повороте. Массой штанги пренебречь. Ускорение свободного падения принять равным g = 9,8 м/с2. А = … (Дж).

Ответ: 0

7.19. Груз массой m прикреплён к правому концу пружины, левый конец которой закреплён в стене. В начальном положении пружина не была деформирована. Ось x направлена вдоль оси пружины, причём начало отсчёта находится в правом конце не деформированной пружины.

Проекция силы упругости пружины равна Fx = – cּxbּx3, где x – удлинение пружины; параметры c и b имеют следующие значения: c = 1000 Н/м, b = 4 Н/м3. Вычислить работу упругой силы пружины при перемещении груза на расстояние s = 1 м. А = … (Дж)

Ответ: – 501

7.20 На двух одинаковых лёгких спиральных пружинках подвешены две гири, отношение масс которых m1/m2 = 3. Гири получили толчки в вертикальном направлении и колеблются так, что амплитуда колебаний первого груза А1 в 2 раза больше амплитуды колебаний А2 второго груза. Как относится энергии их колебаний Е1/Е2 ? Е1/Е2 = …

Ответ: 4

7.21. Дифференциальное уравнение движения материальной точки имеет вид

d2x/dt2 + 12ּdx/dt + cּx = 0.

Определить максимальное значение коэффициента жёсткости с пружины, при котором движение будет апериодическим; с = …

Отметьте правильный ответ.

Ответ: 9

7.22. Дифференциальное уравнение движения материальной точки имеет вид

d2x/dt2 + 100ּx = 15ּsin 5ּt.

Определить амплитуду вынужденных колебаний Авынужд; (результат вычисления округлить с точностью до первого знака после запятой); Авынужд = … .

Ответ: 0,2

7.23. Тело массой m = 0,1 кг движется прямолинейно по закону x =sin (5ּt) (м) под действием силы F. Определить наибольшее значение этой силы;

| F | = …(H).

Ответ: 5

7.24. Дифференциальное уравнение движения материальной точки имеет вид

d2x/dt2 + bּdx/dt + x = 0 .

Определить минимальное значение bmin точки, при котором движение будет апериодическим: bmin = …

Ответ: 4

7.25. Дифференциальное уравнение движения материальной точки имеет вид

d2x/dt2 + 6ּdx/dt + 25ּx = 0 .

Определить условный период Т затухающих колебаний. Т = … (сек).

Ответ: 2πּ0,25

7.26. Дифференциальное уравнение движения материальной точки имеет вид

mּd2x/dt2 + dx/dt + x = 0 .

Определить максимальное значение массы mmax точки, при котором движение будет апериодическим: mmax = … (Результат вычисления определить с точностью до первого знака после запятой);

Ответ: 0,2

7.27. Дифференциальное уравнение движения материальной точки имеет вид

d2x/dt2 + dx/dt + 25ּx = 0 .

Определить, каким будет движение: равномерным, равноускоренным, колебательным или апериодическим.

Отметьте правильный ответ.

-: Равномерное

-: Равноускоренное

+: Колебательное

-: Апериодическое

7.28. Дифференциальное уравнение движения материальной точки имеет вид

d2x/dt2 + dx/dt + x = 0 .

Определить, каким будет движение: равномерным, равноускоренным, колебательным или апериодическим.

Отметьте правильный ответ.

-: Равномерное

-: Равноускоренное

Соседние файлы в папке Механика бакалавр 0 вар