
- •Управление устройствами
- •Основные задачи управления устройствами
- •Классификация периферийных устройств и их архитектура
- •Прерывания
- •Архитектура подсистемы ввода/вывода
- •Способы организации ввода/вывода
- •Ввод/вывод по опросу и по прерываниям
- •Активное и пассивное ожидание
- •Синхронный и асинхронный ввод/вывод
- •Буферизация и кэширование
- •Понятие буферизации
- •Сглаживание неравномерности скоростей процессов
- •Распараллеливание ввода и обработки
- •Согласование размеров логической и физической записи
- •Редактирование при интерактивном вводе
- •Кэширование дисков
- •Опережающее чтение.
- •Драйверы устройств
- •Управление устройствами в ms-dos
- •Уровни доступа к устройствам
- •Драйверы устройств в ms-dos
- •Управление символьными устройствами
- •Управление блочными устройствами
- •Структура диска
- •Разделы и логические тома
- •Средства доступа к дискам
- •Управление устройствами в Windows
- •Драйверы устройств в Windows
- •Доступ к устройствам
- •Управление устройствами в unix
- •Драйверы устройств вUnix
- •Устройство как специальный файл
- •Управление данными
- •Основные задачи управления данными
- •Характеристики файлов и архитектура файловых систем
- •Размещение файлов
- •Защита данных
- •Разделение файлов между процессами
- •Файловая система faTи управление данными вMs-dos
- •Общая характеристика системы fat
- •Структуры данных на диске
- •Структура записи каталога файловой системы fat
- •Создание и удаление файла
- •Работа с файлами в ms-dos
- •Системные функции
- •Доступ к данным
- •Структуры данных в памяти
- •Новые версии системы fat
- •Файловые системы и управление данными в unix
- •Архитектура файловой системы unix
- •Жесткие и символические связи
- •Монтируемые тома
- •Типы и атрибуты файлов
- •Управление доступом
- •Структуры данных файловой системыUnix
- •Доступ к данным в unix
- •Развитие файловых системUnix
- •Файловая система ntfSи управление данными вWindows
- •Особенности файловой системы ntfs
- •Структуры дисковых данных
- •Главная таблица файлов
- •Атрибуты файла
- •Доступ к данным
- •Защита данных
- •Аутентификация пользователя
- •Дескриптор защиты
- •Управление процессами
- •Основные задачи управления процессами
- •Реализация многозадачного режима
- •Понятия процесса и ресурса
- •Квазипараллельное выполнение процессов
- •Состояния процесса
- •Вытесняющая и невытесняющая многозадачность
- •Дескриптор и контекст процесса
- •Реентерабельность системных функций
- •Дисциплины диспетчеризации и приоритеты процессов
- •Проблемы взаимодействия процессов
- •Изоляция процессов и их взаимодействие
- •Проблема взаимного исключения процессов
- •Двоичные семафоры Дейкстры
- •Средства взаимодействия процессов
- •Целочисленные семафоры
- •Семафоры с множественным ожиданием
- •Сигналы
- •Сообщения
- •Общая память
- •Программные каналы
- •Проблема тупиков
- •Управление процессами в ms-dos
- •Процессы в ms-dos
- •Среда программы
- •Запуск программы
- •Завершение работы программы
- •Перехват прерываний и резидентные программы
- •Управление процессами в Windows
- •Понятие объекта в Windows
- •Процессы и нити
- •ПланировщикWindows
- •Процесс и нить как объекты
- •Синхронизация нитей
- •Способы синхронизации
- •Объекты синхронизации и функции ожидания
- •Типы объектов синхронизации
- •Критические секции
- •Сообщения
- •Управление процессами в unix
- •Жизненный цикл процесса
- •Группы процессов
- •Программные каналы
- •Сигналы
- •Средства взаимодействия процессов в стандарте posix
- •Планирование процессов
- •Состояния процессов в unix
- •Приоритеты процессов
- •Интерпретатор команд shell
- •Управление памятью
- •Основные задачи управления памятью
- •Виртуальные и физические адреса
- •Распределение памяти без использования виртуальных адресов
- •Настройка адресов
- •Распределение с фиксированными разделами
- •Распределение с динамическими разделами
- •Сегментная организация памяти
- •Страничная организация памяти
- •Сравнение сегментной и страничной организации
- •Управление памятью в ms-dos
- •Управление памятью в Windows
- •Структура адресного пространства
- •Регионы
- •Отображение исполняемых файлов
- •Файлы, отображаемые на память
- •Стеки и кучи
- •Управление памятью в unix
- •Литература
Дескриптор и контекст процесса
С каждым процессом связаны описывающие его данные в основной памяти, необходимые ОС для поддержки выполнения процесса. Все эти данные можно разбить на две большие структуры: дескриптор процесса и контекст процесса.
Дескриптор процессавключает в себя все те данные о процессе, которые могут понадобиться ОС при различных состояниях процесса. В число элементов дескриптора могут входить, например, идентификатор процесса (некое условное число, обозначающее данный процесс); текущее состояние процесса; его приоритет; владелец процесса (т.е. идентификатор пользователя, запустившего процесс); статистика затраченного процессом общего и процессорного времени; указатель местоположения контекста процесса и др. Дескрипторы всех процессов, существующих в системе, собраны в таблицу процессов.
Контекст процессавключает данные, необходимые только для текущего процесса. Суда относятся, прежде всего, значения всех регистров процессора, включая указатель текущей команды; таблица файлов, открытых процессом; указатели на области памяти, которые должен занимать процесс при его выполнении; значения системных переменных, используемых процессом (например, текущий диск и каталог, информация о последней ошибке при выполнении системных функций); другие системные флаги и режимы, которые могут иметь разные значения для разных процессов.
Точный состав дескриптора и контекста сильно зависят от конкретной ОС.
При переключении текущего процесса система должна каждый раз переключать и текущий контекст, т.е. сохранять в своей памяти или на диске контекст предыдущего выполнявшегося процесса и восстанавливать ранее сохраненный контекст того процесса, который будет выполняться.
Реентерабельность системных функций
В многозадачной системе нельзя исключить возможность того, что переключение процессов произойдет во время выполнения вытесняемым процессом какой-либо из системных функций. При этом выполнение функции не будет завершено, оно будет прервано на середине. Предполагается, что выполнение функции будет завершено позднее, когда прерванный процесс снова будет выбран на выполнение.
Проблема заключается в том, что новый текущий процесс может вызвать ту же самую системную функцию. Возникает вопрос: возможно ли корректное выполнение второго вызова функции, если к этому моменту не закончено выполнение первого вызова той же функции?
Простой пример подобной ситуации – запуск в ОС нескольких программ, каждая из которых блокируется на ожидании клавиатурного ввода, вызвав для этого одну и ту же системную функцию ввода.
Функция или процедура, для которой возможно корректное выполнение ее повторного вызова до завершения первого вызова, называется реентерабельнойилиповторно-входимой.
Проблема реентерабельности функций возникает в программировании и по совершенно другому поводу, не связанному с реализацией ОС. Речь идет о рекурсивных функциях, т.е. функциях, которые могут прямо или косвенно вызывать сами себя. Давно известна и основная причина нереентерабельности функций. Она заключается в использовании одних и тех же ячеек памяти для формальных параметров и локальных переменных при разных вызовах функции. Действительно, если при первом вызове функции в ячейку локальной переменной Xбудет занесено, например, число 10, а при втором – число 20, то после возобновления выполнения первого вызова значениеXбудет неверным.
Лекарство от этой формы нереентерабельности также давно известно и встроено во все уважающие себя языки программирования, начиная с CиPascal. Оно заключается в том, что память для формальных параметров и локальных переменных должна выделяться в стеке программы, при этом каждый новый вложенный вызов получает свой набор ячеек для переменных.
Для случая многозадачной системы использование единого стека неприемлемо, поскольку вызовы функций не являются вложенными, т.е. первый вызов может завершиться раньше, чем второй, что привело бы к неверному использованию стека. Каждый процесс получает свой собственный стек, являющийся частью контекста процесса.
Еще одна причина нереентерабельности касается тех функций ввода/вывода, которые запускают операцию и затем дожидаются ее завершения. Повторное обращение к тому же устройству до завершения первого вызова может привести к ошибке. В данном случае система должна отслеживать состояние устройства и блокировать второй вызов до освобождения устройства.
Проблема реентерабельности системных функций значительно острее стоит для ОС с вытесняющей диспетчеризацией, поскольку переключение процесса может случиться при выполнении любой функции. При невытесняющей диспетчеризации достаточно обеспечить реентерабельную реализацию лишь небольшого числа блокирующих функций.
При переходе от невытесняющей Windows3.xк вытесняющейWindows95 одна из серьезных проблем состояла в сохранении кода большого количества нереентерабельных системных функций. Проблему «решили» путем введения семафора, блокирующего повторный вызов для большого числа функций. Неприятным следствием этого стало взаимное тормозящее влияние процессов. ВWindowsNTэтой проблемы нет, все функции реализованы реентерабельно.